
www.manaraa.com

University of Kentucky University of Kentucky

UKnowledge UKnowledge

Theses and Dissertations--Computer Science Computer Science

2018

Deep Neural Networks for Multi-Label Text Classification: Deep Neural Networks for Multi-Label Text Classification:

Application to Coding Electronic Medical Records Application to Coding Electronic Medical Records

Anthony Rios
University of Kentucky, anthonymrios@gmail.com
Author ORCID Identifier:

https://orcid.org/0000-0003-1781-3975
Digital Object Identifier: https://doi.org/10.13023/etd.2018.306

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation Recommended Citation
Rios, Anthony, "Deep Neural Networks for Multi-Label Text Classification: Application to Coding Electronic
Medical Records" (2018). Theses and Dissertations--Computer Science. 71.
https://uknowledge.uky.edu/cs_etds/71

This Doctoral Dissertation is brought to you for free and open access by the Computer Science at UKnowledge. It has
been accepted for inclusion in Theses and Dissertations--Computer Science by an authorized administrator of
UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/cs_etds
https://uknowledge.uky.edu/cs
https://orcid.org/0000-0003-1781-3975
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu

www.manaraa.com

STUDENT AGREEMENT: STUDENT AGREEMENT:

I represent that my thesis or dissertation and abstract are my original work. Proper attribution

has been given to all outside sources. I understand that I am solely responsible for obtaining

any needed copyright permissions. I have obtained needed written permission statement(s)

from the owner(s) of each third-party copyrighted matter to be included in my work, allowing

electronic distribution (if such use is not permitted by the fair use doctrine) which will be

submitted to UKnowledge as Additional File.

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and

royalty-free license to archive and make accessible my work in whole or in part in all forms of

media, now or hereafter known. I agree that the document mentioned above may be made

available immediately for worldwide access unless an embargo applies.

I retain all other ownership rights to the copyright of my work. I also retain the right to use in

future works (such as articles or books) all or part of my work. I understand that I am free to

register the copyright to my work.

REVIEW, APPROVAL AND ACCEPTANCE REVIEW, APPROVAL AND ACCEPTANCE

The document mentioned above has been reviewed and accepted by the student’s advisor, on

behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of

the program; we verify that this is the final, approved version of the student’s thesis including all

changes required by the advisory committee. The undersigned agree to abide by the statements

above.

Anthony Rios, Student

Dr. Ramakanth Kavuluru, Major Professor

Dr. Mirosław Truszczyński, Director of Graduate Studies

www.manaraa.com

Deep Neural Networks for Multi-Label Text Classification: Application to Coding
Electronic Medical Records

DISSERTATION

A dissertation submitted in partial
fulfillment of the requirements for
the degree of Doctor of Philosophy
in the College of Engineering at the

University of Kentucky

By
Anthony Rios

Lexington, Kentucky

Director: Dr. Ramakanth Kavuluru, Associate Professor of Biomedical Informatics
Co-Director: Dr. Mirosław Truszczyński, Professor of Computer Science

Lexington, Kentucky 2018

Copyright c⃝ Anthony Rios 2018

www.manaraa.com

ABSTRACT OF DISSERTATION

Deep Neural Networks for Multi-Label Text Classification: Application to Coding
Electronic Medical Records

Coding Electronic Medical Records (EMRs) with diagnosis and procedure codes is
an essential task for billing, secondary data analyses, and monitoring health trends.
Both speed and accuracy of coding are critical. While coding errors could lead to
more patient-side financial burden and misinterpretation of a patients well-being,
timely coding is also needed to avoid backlogs and additional costs for the healthcare
facility. Therefore, it is necessary to develop automated diagnosis and procedure code
recommendation methods that can be used by professional medical coders.

The main difficulty with developing automated EMR coding methods is the nature
of the label space. The standardized vocabularies used for medical coding contain over
10 thousand codes. The label space is large, and the label distribution is extremely
unbalanced – most codes occur very infrequently, with a few codes occurring several
orders of magnitude more than others. A few codes never occur in training dataset
at all.

In this work, we present three methods to handle the large unbalanced label space.
First, we study how to augment EMR training data with biomedical data (research
articles indexed on PubMed) to improve the performance of standard neural net-
works for text classification. PubMed indexes more than 23 million citations. Many
of the indexed articles contain relevant information about diagnosis and procedure
codes. Therefore, we present a novel method of incorporating this unstructured data
in PubMed using transfer learning. Second, we combine ideas from metric learning
with recent advances in neural networks to form a novel neural architecture that bet-
ter handles infrequent codes. And third, we present new methods to predict codes
that have never appeared in the training dataset. Overall, our contributions consti-
tute advances in neural multi-label text classification with potential consequences for
improving EMR coding.

www.manaraa.com

KEYWORDS: Natural Language Processing, Machine Learning, Neural Networks,
Multi-label Classification, Biomedical Informatics, Zero-shot Learning

Author’s signature: Anthony Rios

Date: July 26, 2018

www.manaraa.com

Deep Neural Networks for Multi-Label Text Classification: Application to Coding
Electronic Medical Records

By
Anthony Rios

Director of Dissertation: Ramakanth Kavuluru

Co-Director of Dissertation: Mirosław Truszczyński

Director of Graduate Studies: Mirosław Truszczyński

Date: July 26, 2018

www.manaraa.com

Dedicated to my parents, Armando and Gail, my wife, Gabriela, and my tiny
puppy, Milo.

www.manaraa.com

ACKNOWLEDGMENTS

First and foremost, I want to thank my advisor, Dr. Ramakanth Kavuluru, for his

continuous support, guidance, and patience. Under his direction, I have learned

to write, present, and perform research. Furthermore, his scientific knowledge and

attention to detail has been an inspiration to me.

I would also like to thank my co-advisor and committee members: Drs. Mirosław

Truszczyński, Judy Goldsmith, Nathan Jacobs, and Himanshu Thapliyal. Further-

more, I thank Dr. Richard Charnigo for his participation in my committee for my

Ph.D. proposal. Their insights and comments have been invaluable in the prepara-

tion of my dissertation. Likewise, I would also like to thank Dr. Zhiyong Lu, my

internship mentor at the National Library of Medicine, for providing me with the

freedom, flexibility, and collaborative environment to pursue new research directions.

I also want to acknowledge my wife, Dr. Gabriela Romero Uribe, for her help

reviewing my papers, posters, and presentations. The advice I have received from

her has been vital to my success during my time in graduate school. She has provided

me with a sympathetic ear during stressful times. Moreover, she has provided me her

love, support, and encouragement which has been an essential part of my success.

Finally, I want to thank my parents, Armando and Gail Rios, for supporting me

throughout my time as a student. Without their love and support, I would have not

been able to attend graduate school. They have always kept me centered and let me

know I can do anything I set my mind to.

Please note that this list is not comprehensive. Therefore, I want to thank all

my friends and family who contributed to or have been a part of my life during my

collegiate career. Thank you!

iii

www.manaraa.com

TABLE OF CONTENTS

Acknowledgments . iii

Table of Contents . iv

List of Tables . vii

List of Figures . viii

Chapter 1 Medical Coding . 1
1.1 Thesis statement . 4
1.2 Organization . 5
1.3 Related Publications . 6

Chapter 2 Related Work and Background 7
2.1 Multi-label Classification . 7
2.2 Extreme Multi-label Classification . 8
2.3 Neural Networks for Text . 9
2.4 Diagnosis Coding and Biomedical Text Classification 9
2.5 Notation . 10
2.6 Evaluation Measures . 11
2.7 EMR coding using Linear Models . 13

2.7.1 Datasets . 14
2.7.2 Multi-Label Text Classification Approaches 16
2.7.3 Results and Discussion . 21
2.7.4 Conclusion . 24

2.8 Convolutional Neural Networks for Text Classification 24
2.8.1 Convolutions and CFs . 25
2.8.2 Model Specification . 26
2.8.3 Discussion . 29

Chapter 3 Extracting Diagnosis Codes using Transfer Learning from EMRs 30
3.1 Related Work: Transfer Learning . 32
3.2 Materials and Methods . 33

3.2.1 Overview . 35
3.2.2 Convolutional Neural Networks for Text Classification 35
3.2.3 Stage 1: Training on Source 36
3.2.4 Stage 2: Transfer Learning . 36
3.2.5 Word Dropout . 38
3.2.6 Ensemble . 38

3.3 Experiments . 38
3.3.1 Implementation Details . 39

iv

www.manaraa.com

3.3.2 Baseline Methods . 39
3.3.3 Layer by Layer Analysis . 39
3.3.4 Comparison with prior work 40
3.3.5 Label Frequency Analysis . 41

3.4 Conclusion . 41

Chapter 4 EMR Coding with Semi-Parametric Multi-Head Matching Networks 43
4.1 Related Work: Memory Augmented Neural Networks 44
4.2 Our Architecture . 45

4.2.1 Convolutional Neural Networks 46
4.2.2 Multi-Head Matching Network 46
4.2.3 MetaLabeler . 48
4.2.4 Training . 48
4.2.5 Matching Network Interpretation 49

4.3 Experiments . 50
4.3.1 Datasets . 50
4.3.2 Implementation Details . 51
4.3.3 Baseline Methods . 52
4.3.4 Evaluation Metrics . 52
4.3.5 Results . 52

4.4 Conclusion . 54

Chapter 5 Zero-shot and Few-shot Multi-label Learning 55
5.1 Related Work . 58

5.1.1 Few-Shot and Zero-Shot Learning 58
5.1.2 Structured Label Correlations for Multi-label Classification . . 59
5.1.3 Graph Convolutional Neural Networks 59

5.2 Method . 60
5.2.1 Convolutional Neural Network 61
5.2.2 Label Vectors . 61
5.2.3 Label-Wise Attention . 61
5.2.4 GCNN Output Layer . 62
5.2.5 Training . 63

5.3 Experiments . 63
5.3.1 Datasets . 64
5.3.2 Implementation Details. 65
5.3.3 Evaluation Measures . 65
5.3.4 Baseline Methods . 65
5.3.5 Results . 66

5.4 Conclusion . 69

Chapter 6 Conclusion and Future Work . 70
6.1 Summary of Contributions . 70
6.2 Limitations and Directions for Future Work 71

v

www.manaraa.com

Appendix A Graph Regularized Concept Vectors 74

Abbreviations . 77

Bibliography . 80

Vita . 92

vi

www.manaraa.com

LIST OF TABLES

2.1 CMC test set scores . 22
2.2 Testing set scores for the UKYSmall dataset with BNS based feature se-

lection. 23
2.3 Learning Component ablation for the UKYSmall dataset 23

3.1 Transfer learning dataset statistics. 34
3.2 Layer-by-layer results for various transfer learning methodologies. 40
3.3 Results comparing conventional approaches, CNNs, and CNNs with trans-

fer learning . 40

4.1 This table presents the number of training examples (# Train), the number
of test examples (# Test), label cardinality (LC), and the average number
of instances per label (AI/L) for the MIMIC II and MIMIC III datasets. 50

4.2 Results for the MIMIC II dataset. Models marked with * represent our
custom implementations. 53

4.3 Results for the MIMIC III dataset. Models marked with * represent our
custom implementations. 53

4.4 Ablation results for the MIMIC III dataset. 54

5.1 MIMIC II and MIMIC III dataset statistics for few- and zero-shot learning. 64
5.2 MIMIC II results across frequent (S), few-shot (F), and zero-shot (Z)

groups. We mark prior methods for MIMIC datasets that we implemented
with a *. 67

5.3 MIMIC III results across frequent (S), few-shot (F), and zero-shot (Z)
groups. We mark prior methods for MIMIC datasets that we implemented
with a *. 67

5.4 P@k, R@k, and macro-F1 results over all labels (the union of S, F, and Z). 68

vii

www.manaraa.com

LIST OF FIGURES

1.1 Example snippet from a discharge report in the MIMIC III dataset. . . . 3
1.2 Distribution of ICD-9 codes in the entire MIMIC III dataset. 4

2.1 Traditional CNN model for text classification which consists of three main
components: A convolutional layer, max-over-time pooling, and a final
output layer. 25

3.1 In Figure 3.1a, we show an example title and abstract from the Medline
indexed paper by Foo et al. (2017). In Figure 3.1b, we show an example
snippet from a discharge summary in the MIMIC III dataset (Johnson
et al., 2016). 31

3.2 ICD-9 code frequency distribution of the UKYLarge EMR dataset. . . . 34
3.3 The parameters learned in the source task are transferred to the target

task model and fixed while the target task specific model parameters are
updated during training. 35

3.4 This figure compares the macro F-scores on the 10% least frequent codes
to the macro F-score on the 10% most frequent ICD-9 diagnosis codes. . 41

4.1 The matching CNN architecture. For each input instance, x, we search a
support set using different representations of x and use the similar support
instances and auxiliary features to the output layer. 45

5.1 This plot shows the label frequency distribution of ICD-9 codes in MIMIC
III. 56

5.2 Overview of our architecture . 60
5.3 This graph plots the MIMIC III R@k for few-shot (F) labels at different

k values. 68

6.1 Schematic for taking advantage of all the available structured and unstruc-
tured information available in PubMed and UMLS. 72

viii

www.manaraa.com

Chapter 1 Medical Coding

Electronic medical record (EMR) coding is the process of extracting diagnosis and
procedure codes from the digital record (the EMR) about a patient’s visit. The digital
record is mostly composed of multiple textual narratives (e.g., discharge summaries,
pathology reports, progress notes) authored by healthcare professionals, typically
doctors, nurses, and lab technicians. Hospitals heavily invest in training and re-
taining professional EMR coders to annotate all patient visits by reviewing EMRs
manually. Proprietary commercial software tools often termed as computer-assisted
coding (CAC) systems are already in use in many healthcare facilities and were found
to be helpful in increasing medical coder productivity (Dougherty et al., 2013). Thus,
progress in automated EMR coding methods is expected to impact real-world oper-
ations for healthcare facilities.

In the United States, the diagnosis and procedure codes used for EMR coding are
from the International Classification of Diseases (ICD) terminology (specifically the
ICD-10-CM variant) as required by the Health Insurance Portability and Accountabil-
ity Act (HIPPA). ICD codes facilitate billing activities, retrospective epidemiological
studies, and also enable researchers to aggregate health statistics and monitor health
trends. To code EMRs effectively, medical coders are expected to have thorough
knowledge of ICD-10-CM and follow a complex set of guidelines. For example, if
a coder accidentally uses the code “heart failure” (ICD-10-CM code I50) instead of
“acute systolic (congestive) heart failure” (ICD-10-CM code I50.21), then the patient
may be charged substantially more1, causing significant unfair burden. Therefore, it
is important for coders to have better tools at their disposal to find the most appro-
priate codes. In 2010, the Society of Actuaries sponsored a study that estimated the
annual cost of medical coding errors is between 17 to 29 billion dollars (Shreve et al.,
2010). If we can reduce the number of errors created by medical coders, then we can
make a significant impact on the cost of healthcare. Additionally, if coders become
more efficient, hospitals may hire fewer coders to reduce their operating costs. Thus,
automated coding methods are expected to help with expedited coding, cost savings,
and error control.

Discharge summaries are a common textual narrative used for medical coding.
In the popular Medical Information Mart for Intensive Care (MIMIC) datasets (Lee

1https://nyti.ms/2oxrjCv

1

www.manaraa.com

et al., 2011; Johnson et al., 2016), discharge summaries are the primary narratives
available for developing automated medical coding systems. In the 2010 safe practices
report released by the National Quality Forum (Meyer et al., 2010), they recommend
the following information to be included in discharge summaries:

• the principal diagnosis and reason for visiting the hospital,

• significant findings for the patients visit,

• procedures performed and care, treatment, and services provided to the patient,

• the patients condition when they leave the hospital,

• information provided to the patient and family,

• a comprehensive and reconciled medication list, and

• a list of acute medical issues, tests, and studies for which confirmed results are
unavailable at the time of discharge and require follow-up.

In Figure 1.1 we show a snippet of an example discharge summary from the MIMIC
dataset. Overall, the report has a semi-structured format. Fields such as “Chief Com-
plaint” and “Discharge Diagnosis” are easily parsed. However, fields such as “History
of Present Illness” contain unstructured text data. The overall format of a MIMIC dis-
charge report is relatively clean compared to our real-world EMRs which are generally
more disordered. For example, in our dataset of medical records from the University
of Kentucky (UKY), on average, EMRs contain more than 5000 words, which are
around five times more words per instance compared to the MIMIC datasets. This is
expected, given the UKY EMRs contain more information than a discharge report.
Specifically, besides the discharge summary, UKY EMRs also contain progress notes,
pathology, and radiology reports. We study both datasets in this dissertation.

We treat medical coding of EMR narratives as a multi-label text classification
problem. Multi-label classification is a machine learning task that assigns a set of
labels (typically from a fixed terminology) to an instance. Multi-label classification is
different from multi-class problems, which assign a single label to each example from
a set of three or more, and binary classification which assigns a single label from a set
of two. Compared to general multi-label problems, EMR coding has three distinct
challenges. First, with thousands of ICD codes, the label space is large and the label
distribution is extremely unbalanced – most codes occur infrequently with a few
codes occurring several orders of magnitude more than others. Figure 1.2 shows the

2

www.manaraa.com

Figure 1.1: Example snippet from a discharge report in the MIMIC III dataset.

Date of Birth: [**2999-10-8**] Sex: F

Service: NEUROSURGERY

Allergies: No Known Allergies / Adverse Drug Reactions

Attending: [**FAKE NAME**]

Chief Complaint: Meningioma

Major Surgical or Invasive Procedure:
Right Craniotomy

History of Present Illness:
[**fake �rstname**] [**fake lastname**] is a 64-year-old woman,
with longstanding history of rheumatoid arthritis, probable Sweet's syndrome,
and multiple joint complications requiring orthopedic interventions. She was
found to hve a right cavernous sinus and nasopharyngeal mass. Her neurological
problem started [**FAKE DATE**] when she experienced frontal pressure-like
sensations. There was no temporal pattern; but they may occur more often in the
evening. She had fullness in her ear and she also had a cold coinciding to the onset
of her headache.
...
...
...
Family History: Cancer, diabetes, hearing loss, and heart disease.

Physical Exam:
AF VSS, HEENT normal no LNN, Neck supple.
RRR, CTA, NTTP, warm peripherals
...
Discharge Diagnosis: brain lesion

Discharge Condition:
Mental Status: Clear and coherent. Level of Consciousness: Alert and interactive.
Activity Status: Ambulatory - Independent. Neuro exam intact.
....

distribution of diagnosis and procedure codes in the entire MIMIC III dataset. We find
that around 5000 codes in the dataset occur less than ten times. Furthermore, MIMIC
III uses the ICD-9-CM standardized terminology, which contains over 14 thousand
unique diagnosis and procedure codes. From Figure 1.2 we find that more than half of
all ICD-9-CM codes never occur in the dataset. While there have been great advances
in machine learning-based medical coding methods (Baumel et al., 2017; Vani et al.,
2017; Mullenbach et al., 2018), all methods completely ignore the fact that their
systems will never predict an unseen ICD-9-CM code. Second, a patient may have a
large number of diagnoses and procedures. On average, coders annotate an EMR with
more than 20 such codes, hence predicting the top one or two codes is not sufficient for
EMR coding. Moreover, combined with the problem of infrequently occurring codes,
sophisticated multi-label thresholding techniques are required. Third, as previously

3

www.manaraa.com

Figure 1.2: Distribution of ICD-9 codes in the entire MIMIC III dataset.

0
25

00
50

00
75

00
10

00
0

12
50

0

Sorted Label ID

1

10

100

1000

10000

La
be

lF
re

qu
en

cy

15
00

0

More than 50%
of all ICD-9 codes

never appear
in the MIMIC III

dataset

~5000 codes
 occur

≤10 times

discussed, EMR narratives may be very long (i.e., discharge summaries alone may
have over 1000 words), which may result in a needle in a haystack situation when
attempting to seek evidence for particular codes. Therefore, developing methods that
can be efficiently trained, and that can find the relevant information for all codes in
a large document is important.

In this dissertation, we present neural network-based methods that solve the data
sparsity issue and handle long documents. Neural networks have produced state-of-
the-art performance on a wide variety of text classification problems (Collobert et al.,
2011; Kim, 2014; Rios and Kavuluru, 2017). It is traditionally understood that neural
networks require a lot of data to perform well. However, recently special architectures
have been proposed that perform well on datasets with only a few examples per
label (Vinyals et al., 2016; Snell et al., 2017b). It is also possible to take advantage
of domains where data is abundant. For example, in Chapter 3 we take advantage
of biomedical articles indexed by the PubMed search engine to augment a relatively
small dataset of EMRs.

1.1 Thesis statement

Coding of EMRs is of immense importance for hospital and insurance providers. Ma-
chine learning-based methods can be used to create tools to improve the efficiency of
medical coders and help reduce coding errors. In this dissertation, we are concerned
with two significant challenges encountered when developing automated medical cod-

4

www.manaraa.com

ing methods: data sparsity and handling long documents. We hypothesize that there
are three uniques ways of handling these issues. First, if we augment our EMRs
with biomedical textual datasets, then we can improve performance on infrequent
ICD codes. Second, traditional neural networks generally require a large amount of
data. We believe there are matching-based neural network architectures that can
better extract ICD codes in the absence of large amounts of training data. Third, we
believe that the inclusion of distributional and ontological information will lead to
non-trivial performance gains on infrequent codes and codes that have never appeared
in the training dataset.

1.2 Organization

The chapters in this dissertation are organized as follows:

Chapter 2 introduces relevant related work shared among all the methods in this
dissertation. This chapter introduces the basic formal notation used to describe the
various neural network-based methods throughout this manuscript. We then in-
troduce the evaluation metrics used for multi-label classification. Next, we present
our preliminary work using linear models to predict ICD codes to provide a basic
understanding of classic methods. We conclude the chapter by providing a brief
introduction to convolutional neural networks (CNN) for text classification.

Chapter 3 begins by providing an overview of work related to transfer learning, with
an emphasis on methods used for natural language processing. Next, we introduce
a simple, yet effective, method that overcomes the issue of “catastrophic forgetting”,
often associated with transfer learning. Furthermore, we provide detailed experi-
ments on a real-world dataset of EMRs from the University of Kentucky, showing
substantial improvements over prior work.

Chapter 4 describes a novel neural network architecture that incorporates ideas
from memory networks (Vinyals et al., 2016; Rios and Kavuluru, 2018) to overcome
the data sparsity problem. This chapter contains substantial experiments showing
state-of-the-art performance on both the MIMIC II and MIMIC III datasets. We
also provide a detailed ablation study to understand what aspects of the architec-
ture have the largest impact on the overall performance.

Chapter 5 While Chapters 3 and 4 indirectly try to solve the data sparsity issue,
neither of these methods are able to predict ICD-9-CM codes that do not occur in

5

www.manaraa.com

the training dataset. This chapter introduces an explicit method for few- and zero-
shot classification. We also adapt a recently proposed evaluation methodology for
generalized zero-shot learning to the multi-label domain. The method introduced in
the chapter substantially outperforms prior methods for extracting ICD-9 codes on
the MIMIC II and MIMIC III datasets with respect to few-shot codes. Furthermore,
we show substantial improvements over traditional zero-shot methods.

Chapter 6 concludes the dissertation by summarizing the important contributions
and results. Also, we describe a few promising avenues of exploration to improve our
medical coding methods. One avenue focuses on extending our transfer learning
work presented in Chapter 3. Another avenue ties our zero-shot work to open
classification and proposes methods of making zero-shot classification useful to
medical coders.

1.3 Related Publications

This dissertation contains material previously published in the following papers:

• Anthony Rios and Ramakanth Kavuluru. Supervised extraction of diagnosis
codes from EMRs: role of feature selection, data selection, and probabilistic
thresholding. In Proceedings of the IEEE International Conference on Health-
care Informatics (ICHI) 2013 (pp. 66–73).

• Anthony Rios and Ramakanth Kavuluru. Convolutional neural networks for
biomedical text classification: application in indexing biomedical articles. In
Proceedings of the ACM Conference on Bioinformatics, Computational Biology
and Health Informatics (BCB) 2015 (pp. 258–267).

• Anthony Rios and Ramakanth Kavuluru. Analyzing the moving parts of
a large-scale multi-label text classification pipeline: experiences in indexing
biomedical articles. In proceedings of the IEEE International Conference on
Healthcare Informatics (ICHI). 2015 (pp. 1–7).

• Anthony Rios and Ramakanth Kavuluru. EMR Coding with Semi-Parametric
Multi-Head Matching Networks. In proceedings of the Conference of the North
American Chapter of the Association for Computational Linguistics: Human
Language Technologies (NAACL) 2018 (pp. 2081–2091).

6

www.manaraa.com

Chapter 2 Related Work and Background

In this Chapter, we discuss work that is related to all methods presented in this
dissertation. We also present a formal introduction to the notation used in this
manuscript, evaluation metrics for multi-label classification, discuss our prior work
using linear models, and provide a brief introduction to neural networks for text
classification. Related work that is only pertinent to a specific method is presented
in its corresponding chapter.

2.1 Multi-label Classification

We begin by providing a brief review of traditional multi-label classification methods.
Overall, there are two main class of multi-label methods. There is a class of methods
called “problem transformation” approaches which convert the multi-label problem
into multiple single-label classification problems. The second class of methods adapts
a specific algorithm for single-label classification problems to directly predict multiple
labels. This class of methods is generally called “algorithm adaptation”. Both tech-
niques, problem transformation and algorithm adaptation, are covered in a recent
survey by Carvalho and Freitas (2009). Recent attempts in multi-label classification
also consider label correlations when building a model for multi-label data (Read
et al., 2011; Zhang and Zhang, 2010; Read et al., 2008). An important challenge in
problems with a large number of labels per document is to decide the number of labels
each document should be annotated with at test time, which has been addressed by
calibrated ranking (Fürnkranz et al., 2008) and probabilistic thresholding (Quevedo
et al., 2012). Feature selection is an important aspect when building traditional clas-
sifiers using machine learning. Forman (2003) provide a detailed comparative analysis
of feature selection methods. In the multi-label scenario, the best set of features for
one label may not be the best for another. However, performing feature selection
for every label in large label spaces is infeasible. Therefore, methods which combine
the feature relevance scores for each label have been proposed to find the best set of
features jointly overall labels (Olsson, 2006). When dealing with datasets with class
imbalance, methods such as random under/over-sampling, synthetic training sample
generation, and cost-sensitive learning were proposed (see He and Garcia (2009) for a
survey). In contrast with these approaches, Sohn et al. (2008) propose an alternative
Bayesian method to curate customized optimal training sets for each label.

7

www.manaraa.com

2.2 Extreme Multi-label Classification

“Extreme” in “extreme multi-label classification” is simply another term for “large-
scale”. Large-scale can mean anything in the range from a few hundred to a million
labels. Current methods for extreme multi-label classification fall into two categories:
embedding and tree-based methods. Embedding-based methods aim to reduce the
training complexity. They effectively reduce the label space by assuming the training
label matrix is low rank. Intuitively, rather than learning independent classifiers
for each label (binary relevance) (Tsoumakas et al., 2010), classifiers are learned in
a reduced label space L̂ ≪ L where L is the total number of labels. Likewise, a
projection matrix is learned to convert predictions from the reduced label space back
to the original label space. In general, embedding methods vary based on how they
reduce the label space and how the projection operation is optimized. Tai and Lin
(2012) use principal component analysis (PCA) to reduce the label space. Low-rank
Empirical risk minimization for Multi-Label Learning (LEML) (Yu et al., 2014) jointly
optimizes the label space reduction and the projection processes. RobustXML (Xu
et al., 2016) is similar to LEML but it treats infrequent labels as outliers and models
them separately. Liu et al. (2017) employ neural networks for extreme multi-label
problems using a funnel-like architecture that reduces the label vector dimensionality.

Tree-based multi-label methods work by recursively splitting the feature space.
These methods usually differ based on the node splitting criterion. FastXML (Prabhu
and Varma, 2014) partitions the feature space using the nDCG measure as the split-
ting criterion. PfastreXML (Jain et al., 2016) improves on FastXML by using a
propensity scored nDCG splitting criterion and re-ranking the predicted labels to
optimize various ranking measures.

While a lot of work has been proposed for large label spaces, simple traditional
one-vs-rest linear models are still strong baselines, especially for textual data 1. In
our prior work, we show that sparse l1-regularized linear models can be combined into
simple ensembles can provide state-of-the-art performance on large-scale biomedical
text classification problems (Rios and Kavuluru, 2015a). Additionally, most extreme
multi-label methods focus on ranking measures which give more weight to frequent
labels rather than infrequent labels.

1http://manikvarma.org/downloads/XC/XMLRepository.html

8

http://manikvarma.org/downloads/XC/XMLRepository.html

www.manaraa.com

2.3 Neural Networks for Text

Neural Networks have recently been adapted to natural language processing (NLP)
tasks (Bengio et al., 2003; Collobert and Weston, 2008; Mikolov et al., 2013b). Con-
volution neural networks (CNN) take advantage of the so called “convolutional filters”
to automatically learn features that are suitable to the task at hand. They have been
actively used in biomedicine in image classification, even before deep learning be-
came popular recently. However, CNNs have not been explored until recently for text
classification, and are currently used for sentiment/opinion mining (Kim, 2014; Kalch-
brenner et al., 2014) for short texts with fairly balanced class distributions. CNNs
have also made advances in other natural language processing (NLP) tasks including
named entity recognition (Collobert et al., 2011) and relation extraction (Zeng et al.,
2014; Santos et al., 2015).

2.4 Diagnosis Coding and Biomedical Text Classification

Several attempts have been made to extract ICD codes from clinical documents since
the 1990s. Advances in natural language and semantic processing techniques con-
tributed to a recent surge in automatic extraction. Lima et al. (1998) use a hierarchi-
cal approach utilizing the alphabetical index provided with the ICD-9-CM resource.
Although completely unsupervised, this approach is limited by the index not being
able to capture all synonymous occurrences, and also the inability to code both spe-
cific exclusions, and other condition-specific guidelines. We have also shown label
hierarchical information can provide improvements on general biomedical text clas-
sification (Kavuluru and Rios, 2015). Gundersen et al. (1996) extracted ICD-9 codes
from short free text diagnosis statements that were generated at the time of patient
admission using a Bayesian network to encode semantic information. However, re-
cently, concept extraction from longer documents such as discharge summaries has
gained interest. Some advances are based on systems trained on the CMC dataset
developed for the BioNLP workshop shared task on multi-label classification of clin-
ical texts in 2007 (Pestian et al., 2007). We discuss our preliminary work using the
CMC dataset in Section 2.7. Other methods have focused on more realistic datasets,
in terms of size and the number of labels (Johnson et al., 2016). Comprised of ap-
proximately sixty thousand admissions of patients who stayed in critical care units
of the Beth Israel Deaconess Medical Center between 2001 and 2012, MIMIC is a
real dataset and provides a strong test bed for machine learning methods that large
datasets.

9

www.manaraa.com

Traditionally, linear methods have been used for diagnosis code prediction and
general biomedical text classification (Rios et al., 2013). Perotte et al. (2013) de-
veloped a hierarchical support vector machine (SVM) model that takes advantage
of the ICD-9-CM hierarchy. In our prior work, we train a linear model for every
label (Rios and Kavuluru, 2013) and re-rank the labels using a learning-to-rank pro-
cedure (Kavuluru et al., 2015). Zhang et al. (2017) supplement the diagnosis code
training data with data from PubMed (biomedical article corpus and search system)
to train linear models using both the original training data and the PubMed data.
We apply a similar technique to neural networks in Chapter 3.

Recent advances in neural networks have also been put to use for EMR cod-
ing: Baumel et al. (2017) trained a CNN with multiple sigmoid outputs using binary
cross-entropy. Duarte et al. (2017) use hierarchical recurrent neural networks (RNN)
to annotate death reports with ICD-10 codes. Vani et al. (2017) introduced grounded
RNNs for EMR coding. They found that iteratively updating their predictions at
each time step significantly improved the performance. Finally, similar to our work
presented in Chapter 4, memory networks (Prakash et al., 2017) have recently been
used for diagnosis coding.

2.5 Notation

In this work, matrices are represented using bold upper case letters (W, U, V) and
vectors are represented as bold lower case letters (w, x, y). Subscripts are used
to distinguish different matrices and vectors (Wf , Wi, y1, y2). If there are many
matrices or vectors representing something very similar, then superscripts are used
to distinguish them (W1

i , W2
i , W3

i). Finally, we use lower case letters to represent
scalars (y).

Throughout this document, let yi ∈ {0, 1}L be the ground-truth label vector for
the i-th instance, where L is the size of the fixed label set. yi,j = 1 if and only if the
i-th instance is assigned the j-th label; all other elements are zeros. Y ∈ {0, 1}N×L

is a label matrix of the true labels for N instances. Per instance label predictions are
represented as ŷi and the prediction matrix is Ŷ ∈ {0, 1}N×L.

Finally, in general, we define specific notation and terms as required in each chap-
ter. By defining notation as needed, individual chapters can be read in any order. We
make an exception for material that each chapter has in common. If a specific com-
ponent is common among all methods presented in this dissertation, then we define
it once at its first appearance in the manuscript and reference it in future chapters.

10

www.manaraa.com

Also, many variables may be reused across chapters; however dimensions may be
different. At the first occurrence for each variable or in the chapters implementation
details chapter, we explicitly state dimensions to avoid confusion. For example, the
number of labels in the output layer dimensions may differ between chapters (i.e.,
Chapter 3 uses a different dataset compared to Chapters 4 and 5).

2.6 Evaluation Measures

For the purpose of this dissertation, two groups of evaluation measures are defined:
the first works with multi-label classification where the goal is to predict a set of
labels. The second pertains to multi-label ranking, which is suitable for problems
with large label spaces, especially in the context label recommendation. Given an
input instance, multi-label ranking promotes relevant labels to the top of the ranked
label list.

For multi-label classification, micro and macro F-score are widely used (Tsoumakas
et al., 2010). For each label lj in the set of labels l being considered, we have label-
based precision P (lj), recall R(lj), and F-score F (lj) defined as

P (lj) =
TPj

TPj + FPj

, R(lj) =
TPj

TPj + FNj

,

and F (lj) =
2P (lj)R(lj)

P (lj) +R(lj)
, (2.1)

where TPj, FPj, and FNj are true positives, false positives, and false negatives, for
label lj, respectively. Precision is the fraction of predicted relevant labels among
all predicted labels, while recall is the fraction of predicted relevant labels among
all relevant labels. Then F() is simply the harmonic mean between precision and
recall for the j-th label. Given the label-wise F-scores defined in Equation 2.1, the
label-based macro averaged F-score is defined as

Macro-F =
1

L

L∑
j=1

F (lj). (2.2)

Intuitively, macro measures consider all labels equally independent of how many times
each label occurs in the dataset.

11

www.manaraa.com

The label-based micro precision, recall, and F-score are defined as

Pmic =

∑L
j=1 TPj∑L

j=1(TPj + FPj)
, Rmic =

∑L
j=1 TPj∑L

j=1(TPj + FNj)
,

and Micro-F =
2Pmic ·Rmic

Pmic +Rmic
, (2.3)

respectively. Unlike macro-based measures, micro measures tend to give more impor-
tance to labels that are more frequent.

The issue with both macro- and micro-based measures is that a predefined thresh-
old must be set to predict each label. For example, assuming a logistic regression
classifier, each label will have a score between 0 and 1. The default threshold used is
typically 0.5. If we predict a specific label, then our classifier is more confident than
not. It is also possible to use a different threshold. For example, if we increase our
threshold, then we expect our recall to decrease while possibly increasing precision.
Furthermore, different labels may require different thresholds. To avoid these issues
we also use the area under the receiver operating characteristic curve (AUCOC). AU-
ROC is calculated by first calculating the true positive rate (also known as recall)
and the false positive rate

FP

FP + TN

using multiple thresholds ranging from 0 to 1. This produces a curve, then AUROC is
calculated by measuring the area under the curve. Similar to micro-based measures,
AUROC gives more weight to frequent classes. So, for imbalanced datasets, AUROC
tends to be overly optimistic. Therefore, another metric is the area under the precision
recall curve (AUPRC). Similar to AUROC, the recall is calculated across multiple
thresholds. However, instead of using the false positive rate, AUPR uses precision.
Both, AUROC and AUPRC can be calculated for each label individually. Likewise,
both macro- and micro-based measures are possible with both metrics. For macro
AUROC and AUPRC, the area under the curve is first calculated for each label, then
the scores are simply averaged together similar to Equation 2.2. For micro-based
scores the micro-based precision, recall, and false positive rates are calculated over
all labels using the same threshold at each point in the curve.

The next set of metrics evalaute multi-label ranking. Precision at k (P@k) is a
common evaluation measure for evaluating extreme multi-label ranking methods (Yu
et al., 2014). Intuitively, P@k weights the top k predictions equally. This means
the absolute rank is not important as long as the labels are ranked in the top k.

12

www.manaraa.com

Moreover, unlike precision for classification-based metrics, P@k ignores the aboslute
score. P@k is defined as

P@k =
1

N

N∑
i=1

1

k

∑
l∈rankk(ŷ)

yi,l, (2.4)

where rankk(ŷ) is the set of top k ranked label indices. Intuitively, the precision is
calcualted for each example independently, then all the scores are averaged examples.
This is known as a example-based measure. Similarly, we define the R@k as

R@k =
1

N

N∑
i=1

1

∥yi∥0

∑
l∈rankk(ŷ)

yi,l (2.5)

where ∥yi∥0 represents the L0 norm on the ground truth label vector which counts
the number of labels assigned to the i-th example. R@k is a better measure when
each example is only annotated with a few labels. For example, if we measure P@10

and each example has on average only 2 labels, the scores will be small even if the
top 10 ranked labels contain all true positives.

Finally, we briefly define the traditional example-based precision, recall, and F-
score measures as

P ex =
1

N

N∑
i=1

∑L
j=1 TP

i
j∑L

j=1(TP
i
j + FP i

j)
, Rex =

1

N

N∑
i=1

∑L
j=1 TP

i
j∑L

j=1(TP
i
j + FN i

j)
,

and Ex-Micro-F =
1

N

N∑
i=1

2P ex ·Rex

P ex +Rex
, (2.6)

where TP i
j , FP i

j , and FN i
j represent the number of true positives, false positives,

and false negatives for the i-th instance and the j-th label, respectively. Both P ex

and Rex are similar to R@k and P@k. If the true positives, false positives, and
false negatives are calculated using a ranking based thresholding strategy, then the
two evaluation methodologies are equivalent. However, the traditional example-based
measures generalize to other thresholding strategies.

2.7 EMR coding using Linear Models

Before we provide an introduction to neural networks (NN) for text classification, and
before we present our NN methods for assigning ICD codes to EMRs, we describe our

13

www.manaraa.com

preliminary work using traditional linear models, feature selection, and data subset
selection methodologies to extract ICD codes from small datasets. Moreover, we
discuss the limitations of the methods and datasets described in the section.

2.7.1 Datasets

The 2007 shared task on coding radiology reports (Pestian et al., 2007) was the first
effort that popularized automated EMR coding. The CMC dataset consists of 1954
radiology reports arising from the outpatient chest x-ray and renal procedures and is
observed to cover a substantial portion of pediatric radiology activity. The radiology
reports are formatted in XML with explicit tags for history and impression fields.
There are a total of 45 unique codes and 94 distinct combinations of these codes in
the dataset. The dataset is split into training and test sets of nearly equal size where
reports for all possible codes and combinations occur in both sets. This means that
all possible combinations that are encountered in the test set are known ahead of
time. Furthermore, from the 1954 reports in the CMC dataset, 978 are included in
the training dataset with their corresponding ICD-9 codes; the remaining documents
form the test set. The top system on the CMC dataset obtained a micro-average
F-score of 90% and 21 of the 44 participating systems scored between 80% and 90%.

For each instance in the CMC dataset there are two fields (in the XML file) that
contain textual data, ‘clinical history’ and ‘impression’. The clinical history field
contains textual information entered by a physician before a radiological procedure
about the patient’s history. The impression field contains textual information en-
tered by a radiologist after the radiological procedure about his observations of the
patient’s condition. Many of the entries contained in these two fields are very short.
An example clinical history field is “22 month old with cough." The corresponding
impression is just one word “normal." The average size of a report is only 21 words.

For this study, we also built a second dataset to study code extraction at the EMR
level, UKYSmall . We created a dataset of 1000 clinical documents corresponding to a
randomly chosen set of 1000 in-patient visits to the UKY Medical Center in the month
of February, 20122 We also collected the ICD-9 codes for these EMRs assigned by a
trained coder at the UKY medical records office. Aggregating all billing data, this
dataset has a total of 7480 diagnoses leading to 1811 unique ICD-9 codes. ICD-9 codes
have the format abc.xy where the first three digits abc capture the category. Using
the (category code, label, count) representation, the top 5 most frequent categories

2This dataset has been approved by the UKY IRB for use in research projects (protocol #12-
0139-p3h).

14

www.manaraa.com

are (401, essential hypertension, 325), (276, Disorders of fluid electrolyte and acid-
base balance, 239), (305, nondependent abuse of drugs, 236), (272, disorders of lipoid
metabolism, 188), and (530, diseases of esophagus, 169). On average, each EMR
is annotated with 7.5 codes. It is important to understand that each EMR can be
assigned a different number of ICD-9 codes. There are EMRs with only one code,
while the maximum number of ICD-9 codes assigned to an EMR is 49. For each
in-patient visit, the original EMR consisted of several documents, some of which
are not plain text files but are stored in the RTF format. Some documents, like
care flowsheets, vital signs sheets, and ventilator records were not considered for this
analysis. Overall, we have a total of 5583 documents for all 1000 EMRs. There is an
average of 5.6 textual documents per EMR, but we only consider those authored by
physicians. After filtering out documents not authored by physicians, we obtain an
average of 2.8 documents per EMR.

Since many of the 1811 codes in the UKYSmall dataset are assigned to very few
examples, for this preliminary study, we decided to consider extracting codes at the
fourth digit level. In other words, all codes of the form abc.xy for different ‘y’ are
mapped to the four digit code abc.x. With this mapping, the number of unique
codes is reduced to 1410. Note the the average number of codes per EMR even when
we collapsed the fifth digit is still 7.5 (the same value as for the case of full five digit
codes). This is because, in general, an EMR does not have two codes that differ at
the fifth digit, which captures the finest level of classification. The average size of
each EMR (that is, of all textual documents in it) in the UKYSmall dataset is 2088
words. Even when truncated to 4 digits, there were still many codes that had too
few examples to apply traditional supervised methods. Hence, we resorted to using
only 56 codes (at that 4th digit level) that had at least 20 EMRs in the dataset; the
number of unique combinations of these 56 codes is about 554. After removing those
EMRs that did not have any of these frequently occurring 56 codes, we are left with
827 EMRs in the dataset. We randomly select and removed 100 examples from the
dataset to be used for testing and the remaining 727 EMRs form the training dataset.

Label-cardinality is the average number of codes per report (or EMR in the UKYS-
mall dataset). To use consistent terminology we refer to the single reports in the CMC
dataset as EMRs that consist of just one document. Let m be the total number of
EMRs and Yi be the set of labels for the i-th EMR. Label-cardinality is defined as

Label-Cardinality =
1

m

m∑
i=1

|Yi|.

15

www.manaraa.com

The CMC training dataset has a label cardinality of 1.24 and the UKYSmall dataset,
counting on the 56 frequent codes, has a label cardinality of 3.86.

The CMC and UKYSmall datasets have significant differences: the CMC data set
is coded by three different coding companies and final codes are consolidated from
these three different extractions. As such, it is of higher quality compared to the
UKYSmall dataset which is coded by only one trained coder from the UKY medical
records office. On the other hand, the CMC dataset does not have the broad coverage
of the UKYSmall dataset, which models a more realistic dataset at the EMR level.
The CMC dataset only includes radiology reports and has 45 codes with 94 code
combinations and has on an average 21 words per EMR. In contrast, even with the
final set of 56 codes (at the four digit level) that have at least 20 examples that we
use for our experiments, the number of combinations for the UKYSmall dataset is
554 with the average EMR size two orders of magnitude more than the average for
the CMC dataset. However, the number of codes and the size of the dataset in the
UKYSmall dataset is not realistic compared to the experiments with larger datasets
in Chapters 3, 4, and 5.

2.7.2 Multi-Label Text Classification Approaches

In this section, we describe the methods we employ for multi-label classification to
extract ICD-9 codes from both of our datasets. Our core methods primarily use
the problem transformation approach where the multi-label classification problem
is converted into multiple binary classification problems, binary relevance. We also
use different approaches that take into account label correlations expressed in the
training data. Besides this basic framework, we utilize feature selection, training data
selection, and probabilistic thresholding as additional components of our classification
systems. One of the goals of this preliminary work is to see how all these components
and transformation approaches perform on the two different medical coding datasets,
CMC and UKYSmall.

Document features. We use unigram and bigram counts as features. Stop words
(determiners, prepositions, and so on) were removed from the unigrams. Since uni-
grams and bigrams are syntactic features, we also use semantic features such as named
entities and binary relationships (between named entities) extracted from text, typi-
cally called semantic predications.

To extract named entities and semantic predications, we use software made avail-
able through the Semantic Knowledge Representation (SKR) project by the National

16

www.manaraa.com

Library of Medicine (NLM). Specifically, the two software packages we use were
MetaMap and SemRep. MetaMap (Aronson, 2001) is a biomedical named entity
recognition program that identifies concepts from the Unified Medical Language Sys-
tem (UMLS) Metathesaurus, an aggregation of over 160 biomedical terminologies.
When MetaMap outputs different named entities, it associates a confidence score in
the range from 0 to 1000. We only use concepts with a confidence score of at least 700
as features. Each of the concepts extracted by MetaMap also contain a field specifying
if the concept was negated (e.g., “no evidence of hypertension”). We use negated con-
cepts that capture the absence of conditions/symptoms as different features from the
original concepts. We use SemRep (Rindflesch et al., 2003) , a relationship extraction
program that extracts semantic predications of the form C1 → relationType → C2

where C1 and C2 are two different biomedical named entities and relationType ex-
presses a relation between them (e.g., “Tamoxifen treats Breast Cancer”). Because
predication extraction is made by making calls using the Web API provided by SKR,
we only use predications as features for the de-identified CMC dataset and not for
the UKYSmall dataset. If there is more than one document in an EMR, features are
aggregated from all documents authored by a physician.

Problem Transformations for Multi-Label Classification. For the binary
classifiers for each label, we experimented with three base classifiers: Support Vector
Machines (SVMs), Logistic Regression (LR), and Multinomial Naive Bayes (MNB).
We used the MNB classifier that is made available as part of the Weka framework.
For LR, we used LibLINEAR (Fan et al., 2008) implementation in Weka and for
SVMs we used LibSVM (Chang and Lin, 2011) in Weka.

We experimented with four different multi-label multi-label problem transforma-
tion methods: binary relevance, copy transformation, ensemble of classifier chains,
and ensemble of pruned label sets.

Let T be the set of all labels and let L = |T |. Binary relevance learns L binary
classifiers, one for each label in T . It transforms the dataset into L separate datasets.
For each label Tj, we obtain the dataset for the corresponding binary classifier by con-
sidering each document–label-set pair (Di,Yi) and generate the document-label pair
(Di, Tj) when Tj ∈ Yi or the pair (Di,¬Tj) when Tj ̸∈ Yi. When predicting, the labels
are ranked based on their score output by the corresponding binary classifiers and
the top r labels are considered as the predicted set for a suitable r. The copy trans-
formation transforms multi-label data into single-label data. Let T = {T1, . . . , TL}
be the set of L possible labels for a given multi-label problem. Let each document

17

www.manaraa.com

Dj ∈ D, j = 1, . . . ,m, have a set of labels Yj ⊆ T associated with it. The copy trans-
formation transforms each document–label-set pair (Dj,Yj) into |Yj| document–label
pairs (Dj, Ts), for all Ts ∈ Yj. After the transformation, each input pair for the
classification algorithm will only have one label associated with it and one can use
any single-label method for classification. The labels are then ranked based on the
score given from the classifier when generating predictions. We then take the top r

labels as our predicted label set.
One of the main disadvantages of the binary relevance and copy transformation

methods is that they assume label independence. In practical situations, there can
be dependence between labels when labels co-occur frequently or when a label occurs
only when a different label is also tagged. Classifier chains (Read et al., 2011), based
on the binary relevance transformation, try to account for these dependencies that the
basic transformations cannot. Like binary relevance, classifier chains transform the
dataset into L datasets for binary classification per each label. But they differ from
binary relevance in the training phase. Classifier chains loop through each dataset in
some predefined order, training each classifier one at a time. Each binary classifier in
this order will add a new Boolean feature to the subsequent binary classifier datasets
to be trained next. The issue with classifier chains, is that its performance depends
heavily on the predefined order of the labels. Read et al. (2011) propose a simple, yet
effective, ensemble method which overcomes the issue of label ordering, ensemble of
classifier chains (ECC).

While the ensemble of classifier chains method overcomes some of the issues in-
volving the ordering of chaining, for large label spaces, larger ensembles are required
to overcome the label ordering issue. Another multi-label classification method that
takes label correlations into account is the pruned label sets approach (Read et al.,
2008). In this approach, a multi-label problem is transformed into a multi-class prob-
lem by representing combinations of different labels as new classes. Let each document
Dj ∈ D, j = 1, . . . ,m, have a set of labels Yj ⊆ T associated with it. Pruned sets
will treat each unique set of labels among Yj as a single class and corresponding
EMRs as training examples for that class. Only combinations whose training data
counts are above a user chosen threshold are converted into new classes. For infre-
quent combinations, smaller subsets of these combinations that are more frequent are
converted into new classes with training examples obtained from the corresponding
combinations. To overcome the issue of not being able to predict subsets of very
frequent combinations (since they are already converted into separate classes) in the
basic pruned sets approach, using an ensemble approach, several pruned set classi-

18

www.manaraa.com

fiers (Read et al., 2008) are trained on random subsets of the original training data
with final predictions made using a voting approach for each label.

Feature selection. An important issue in classification problems with a large num-
ber of number of classes and features is that the features most relevant in classifying
one class from the rest might not be the same for every class. Furthermore, many
features are either redundant or irrelevant to the classification tasks at hand. In
the domain of text classification, Bi-Normal Separation (BNS) score was observed
to result in best performance in most situations among a set of 12 feature selection
methods applied to 229 text classification problems (Forman, 2003). We employ this
feature scoring method for this effort. Let T = {T1, . . . , TL} be the set of L possible
labels. For each label Ti ∈ T and for each feature, we calculate the number of true
positives (tp) and false positives (fp) with respect to that feature – tp is the number
of training EMRs (with label Ti) in which the feature occurs. Similarly, fp is the
number of negative examples for Ti in which the feature occurs. Let pos and neg

be the total number of positive and negative examples for Ti, respectively. With
F−1 denoting the inverse cumulative probability function for the standard normal
distribution, we define the BNS score of a given feature for a particular class as

BNS = |F−1(tpr)− F−1(fpr)| where

tpr =
tp

pos
and fpr =

fp

neg
.

Because F−1(0) is undefined, we set tpr and fpr to 0.0005 when tp or fp are equal
to zero.

For each of the L binary classification problems, we pick the top k ranked features
for each label. In our experiments k = 8000 gave the best performance out of a total
of 68364 features for the UKYSmall dataset. The number of features was very small
for the CMC dataset, with a total of 2296 features, feature selection did not improve
the performance.

Greedy ‘Optimal’ Training Data Selection In the case of multi-label problems
with a large number of classes, the number of negative examples is overwhelmingly
larger than the number of positive examples for most labels. We experimented with
the synthetic minority oversampling approach (Chawla et al., 2002) for the positive
examples which did not prove beneficial for our task. Deviating from the conven-
tional random under/over-sampling approaches, we adapted the ‘optimal’ training

19

www.manaraa.com

Algorithm 1 Optimal Training Set Selection
1: for all Binary datasets B1 to Bq do
2: Move 20% of the positive examples and 20% of the negative examples from

Bi to a validation dataset (Vi).
3: Put the remaining positive examples into a smaller training dataset (STSi).
4: Score the remaining negative examples in Bi according to their similarity with

positive examples.
5: Initialize snapshot variable k = 1
6: while Bi is not empty do
7: Remove the top 10% scored negative examples in Bi and add them to

STSi.
8: Record the snapshot of the current training set, STSk

i = STSi.
9: Build a binary classifier for i-th code with training dataset STSk

i and
record the F1.5 score on Vi.

10: k = k + 1
11: Set the optimal training set OTS = the snapshot STSk

i with the highest F1.5

score.

set (OTS) selection approach used for medical subject heading (MeSH terms) extrac-
tion from biomedical abstracts by Sohn et al. (2008). The OTS approach is a greedy
Bayesian method that under-samples the negative examples to select a customized
dataset for each label. The greedy selection is not technically optimal but we stick
with the terminology in (Sohn et al., 2008) for clarity. The method for finding OTS
is described in Algorithm 1. Intuitively, the method ranks negative examples accord-
ing to their similarity to positive examples and iteratively selects negative examples
according to this ranking, and finally selects the negative subset that offers the best
performance on a validation set for that label.

Here we describe how to compute the score for negative examples. Since we want
to select those negative examples that are the most difficult to distinguish from the
positive examples, for a given negative training example Dj, we would like our score
to be proportional to P (positive|Dj). Using Bayes theorem, this quantity can be
shown (see the online appendix A of (Sohn et al., 2008)) to monotonically increase
with the following score function

Score(Dj) = ln

(
P (Dj|positive)
P (Dj|negative)

)
,

where P (Dj|positive) is the probability estimate of document Dj given the class is
positive, which is estimated using

∏
i P (wi|positive) where wis are the unigrams in

Dj. Each P (wi|positive) is estimated using counts of wi in the positive examples

20

www.manaraa.com

in the training data. Similarly, P (Dj|negative) is also estimated. The measure we
use for assessing the performance of each STS on the validation set in algorithm 1
is the traditional Fβ measure with β = 1.5. We chose F1.5 over the traditional
balanced F1 measure to give more importance to recall since the main utility of code
prediction is to assist trained coders. Our adaptation of the Sohn et al. (2008) method
differs from the original approach in that we don’t resort to the leave-one-out cross
validation and instead use a validation set to select the OTS. We also use the naive
Bayes assumption for estimates of P (Dj|positive) involving terms for unigrams that
occur in the document.

Probabilistic thresholding. In multi-label classification, it is also important to
consider the effect of the number of labels predicted per document on the performance
of the approaches used. The example, macro and, micro F-scores are dependent on
the threshold because it can significantly impact the weight between precision and
recall. A straightforward (and the default approach in many implementations) is to
predict all labels whose base binary classifiers return posterior probabilities > 0.5.
This could lead to more labels than is actually the case or fewer labels than the
actual number. A quick fix that many employ is to pick a threshold of top r (r-
cut) ranked labels where r is chosen to maximize the example-based F-score on the
training data. However, simply picking the top r labels will always result in the same
number of predicted labels for each document in the test set. We used an advanced
thresholding method, Multi Label Probabilistic Threshold Optimizer (Quevedo et al.,
2012) (MLPTO), for choosing a different number of labels per EMR that can vary for
each EMR instance. The optimizer we employed uses 1 − (Example-Based-F-score)
as the loss function and finds the r that minimizes the expected loss function across
all possible example-based contingency tables for each instance. For specific details
of this strategy, please see Quevedo et al. (2012).

2.7.3 Results and Discussion

In this section we present the results we obtain on both datasets and assess the role
of different components of the learning approaches we explored in Section 2.7.2.

CMC dataset results. The best method on the CMC dataset are obtained using
unigrams and named entity counts (without any weighting) as features and SVMs as
the base classifiers. In Table 2.1, we present the results when using the binary rele-
vance (BR), ensemble of classifier chains (ECC), and ensemble of pruned sets (EPS)

21

www.manaraa.com

Table 2.1: CMC test set scores

Example-Based Micro Macro
Precision Recall F-Score Precision Recall F-Score Precision Recall F-Score

BR
SVM 82 82 81 86 81 83 54 48 49
SVM/Bagging 83 82 81 87 81 84 56 47 49

EPS SVM 86 81 82 88 78 83 44 32 34

ECC SVM 84 84 83 88 82 85 54 44 47

problem transformations. We also used SVMs with bagging to compare a simple BR-
based ensemble with the more complex ensemble approaches ECC and EPS, which
take label dependencies into account. We find that the best performing classifier is
the ensemble of classifier chains with an F-score of 85%. It is interesting to see that
BR with bagging also performed reasonably well. For the CMC competition, the mi-
cro F-score was the measure used for comparing relative performances of contestants.
The mean score in the competition was 77% with a standard deviation of 13%. The
best performing method was able to achieve a 90% micro F-score.

There were many instances in the CMC dataset where our methods did not predict
any codes. We experimented with an unsupervised approach to generate predictions
for those examples: we generated named entities using MetaMap for each of these
documents that did not have any predictions. We mapped these entities to ICD-9-
CM codes via a knowledge-based mapping approach (Bodenreider et al., 1998) that
exploits the graph of relationships in the UMLS Metathesaurus (which also includes
ICD-9-CM). If MetaMap generated a concept that got mapped to an ICD-9 code we
trained on, we used that ICD-9 code as our prediction. We were able to increase
our best F-score from using ECC from 85% to 86% using this method. Also, while
we don’t report the results for when we added semantic predications as features, the
results were comparable with no major improvements. Feature selection, optimal
training sets, and probabilistic thresholding did not make significant improvements
for the CMC dataset.

UKYSmall dataset results. In Table 2.2 we present the results on the test set for
the UKYSmall dataset. For this dataset, we first tried our best performing models
from the CMC dataset. We noticed that ECC did not perform well on this larger
dataset; there seem to have been very few label dependencies in this dataset – recall
that there were over 500 unique label sets of the 56 labels used for training for the
in house dataset. It is also possible that the method was not sophisticated enough
to capture the label correlations. Also, on this dataset, we achieved the best results

22

www.manaraa.com

Table 2.2: Testing set scores for the UKYSmall dataset with BNS based feature
selection.

Example-Based Micro Macro
Precision Recall F-Score Precision Recall F-Score Precision Recall F-Score

LR 38 21 24 64 16 25 21 13 15
BR LR+MLPTO+OTS 59 42 45 54 37 44 40 29 32

LR+OTS+RCut 3 40 49 38 40 41 41 34 31 29

Copy LR+RCut 3 39 49 38 39 39 39 30 32 28

Table 2.3: Learning Component ablation for the UKYSmall dataset

Example-Based Micro Macro
BR/LR (common) Precision Recall F-Score Precision Recall F-Score Precision Recall F-Score

BNS+OTS+MLPTO 59 42 45 54 37 44 40 29 32
-MLPTO 52 34 37 61 32 42 43 26 30
-OTS 60 36 40 57 29 39 42 25 29
-BNS 30 11 15 31 10 15 05 04 04

using LR instead of an SVM as our base classifier. Furthermore, we hypothesize
that because the UKYSmall dataset was larger than CMC, we were able to take
advantage of tf-idf weighting and used bigrams, unigrams, and CUIs as features. For
the features used for the models in Table 2.2, we used feature selection with BNS
and also removed features that did not occur at least 5 times in the training set.
Overall, we show the results for four combinations: 1. BR with LR; 2. BR with OTS
and probabilistic thresholding (MLPTO); 3. BR with optimal training sets (OTS)
and always picking 3 labels (RCut 3); and 4. Copy Transformation (RCut 3). The
second row, the combination of OTS, BNS, and MLPTO gives the best F-scores
across all three types of measures although other combinations in rows 3 and 4 offer
a higher recall with substantial losses in precision. Since these methods use RCut 3,
that is, three labels are always picked for each EMR, we can see how the recall gain
also introduced many false positives, a scenario that MLPTO seems to have handled
effectively with separate thresholding for each instance. Finally, we can see from
the first row, where only BR is used without any other components, diagnosis code
extraction is a difficult problem that does not lend itself to simple basic transformation
approaches in multi-label classification.

In Table 2.3, we show the results of learning component ablation on our best
classifier (from row 2 of Table 2.2) shown as the first row. While removal of MLPTO
and OTS caused losses of up to 8% in F-scores, dropping feature selection with
BNS caused a drop of 30% in F-score, which clearly demonstrates the importance

23

www.manaraa.com

of appropriate feature selection in these combinations. However, interestingly, just
using BNS alone without MLPTO and OTS did not result in major performance
gains compared to the first row of Table 2.2.

2.7.4 Conclusion

In this section, we described preliminary work on two small medical datasets, CMC
and UKYSmall. Moreover, we show traditional methods such as linear models, feature
section, and under-sampling perform well on both datasets. This section contrasts
with the methods we describe in future chapters. Specifically, in this section, the
methods depend on hand-crafted features (feature engineering), whereas future sec-
tions focus more on architecture engineering and modifying neural network training
procedures. A few of the components described in this section will not easily scale
to tens of thousands of labels which are available in the ICD terminologies. For ex-
ample, performing feature selection and data subset selection (OTS) for each label
can easily become infeasible as the number of features and number of labels grow. In
large datasets, there can be more than a million ngrams (unigrams and bigrams).

While there are many differences between the methods described in this section
and the methods in future chapters, there are also commonalities in terms of the
problems they try to solve. For example, in this section, we describe both the MLPTO
and RCut thresholding strategies. We see even with small label sets, thresholding is
an important factor for certain evaluation measures. This issue is amplified as the
total number of labels grows. We discuss this further in Chapter 4.

In summary, for these small datasets, we did not encounter the two major issues
that plague real-word datasets. For example, the CMC dataset contains only 21
words per example on average. Contrast this with Chapter 3 which contains EMRs
with over 10000 words. Likewise, with only 56 codes in the UKYSmall dataset, and
45 labels in the CMC dataset, we did not have to address infrequent codes that may
occur only once in the training dataset, or worse, never appear in the training dataset
at all. Both of these issues are addressed in future chapters.

2.8 Convolutional Neural Networks for Text Classification

Convolutional neural networks (CNNs) are a substantial part of the methods intro-
duced in Chapters 3, 4, and 5. In this section, we provide background on CNNs for
text classification. Specifically, we describe the model we applied to a biomedical text
classification problem in Rios and Kavuluru (2015b). We also provide an intuitive

24

www.manaraa.com

Figure 2.1: Traditional CNN model for text classification which consists of three main
components: A convolutional layer, max-over-time pooling, and a final output layer.

O

explanation of CNNs, and subsequently elaborate with a more detailed specification
of the model and the standard training process.

The central concept in CNNs is the notion of convolution filters (CF) that are
traditionally used in signal processing. The general principle is to learn several CFs
which are able to extract useful features from a document for the specific classification
task based on the training dataset. This has proven to be very useful in computer
vision (Zeiler et al., 2010) where convolutions learn high level features of an image
(e.g., curves and faces). Before we go into the specifics, we provide a high-level
overview of convolutions for text classification.

2.8.1 Convolutions and CFs

A convolution is a binary operation involving the following operands: a segment of
text and a specific CF, both of which are represented as real matrices for our purposes.
The output is a single real number. The matrix representation of the text segment,
which is typically a contiguous sequence of words in the document, is composed of
the word vectors of tokens that constitute it. A CF is also a matrix of the same
dimensions as the text segment matrix. A specific CF operates on all contiguous
segments of a document using a sliding window, producing as many real number

25

www.manaraa.com

outputs as there are contiguous segments of a certain length in the document. This
sequence of real numbers is called the feature map associated with the particular CF
being used. Different CFs produce different feature maps, which can then be used
as features in text classification. The overview of the convolution operation and CFs
explained here forms the convolutional layer of the CNN. Traditionally, there is a
conventional softmax layer that takes as input the feature maps and outputs class
probability estimates. The main idea is to learn CFs (that is, the elements in the
corresponding matrices) that produce better feature maps that optimize our objective
function. The learning process is based on predicting classes for training instances and
making adjustments to the CF elements through back propagation of the gradients of
the objective function (conditional log-likelihood of training data) being optimized.
In this intuitive explanation, we left out many details including the mathematical
definition of the convolution operation, the objective function, regularization (to deal
with overfitting), and the stopping protocol for the learning process. The following
section discusses these in detail.

2.8.2 Model Specification

The architecture of the full CNN model described in this section is shown in Figure 2.1.
It has two layers, including a single convolution layer, and a fully connected output
(softmax) layer.

The base component in the model is a word vector w ∈ Rd, where d is the
dimension of the word vectors. A document is represented as a matrix O ∈ Rn×d,
where n is the number of words in it and each row represents the word vector for
the corresponding token. To simplify the equations in this section we will assume
the ground truth for the document Y ∈ R2 such that Y2 = 1 and Y1 = 0 (Y2 = 0

and Y1 = 1) when we are training on a positive (negative) instance. This is more
aligned with the two output nodes of the final layer for the two corresponding classes
(positive/negative) for each binary classifier. Although a single node would have been
sufficient for binary classification, it is also possible to chose to build a model with
multiple nodes to simply have the code set-up for multi-class classification for other
text classification problems.

We define a CF W ∈ Rh×d, where h is the number of words we wish the convolu-
tion filter to span, that is, the length of the sliding window. Let the 2-D convolution

26

www.manaraa.com

operation ∗ be defined as

W ∗Oj:j+h−1 =

j+h−1∑
i=j

d−1∑
k=0

Wi,kOi,k.

We next map a length h word window, Oj:j+h−1, of the document to a real number
cj ∈ R using a non-linear function f as

cj = ReLU(W ∗Oi,j:j+h−1 + b),

where b ∈ R is the bias term for the convolution filter, and ReLU represents the
rectified linear function (Glorot et al., 2011; Nair and Hinton, 2010). After convolving
over the entire document using W, we have the corresponding convolved feature map

c(W) = [c1, c2, . . . , cn−h+1].

To overcome the issue of varying document lengths we perform max-pooling (Col-
lobert et al., 2011) operation

ĉW = max
i

c(W)i,

which gives a single feature ĉW corresponding to the feature map generated by W.
However, we will learn several CFs, say k of them, W1, . . . ,Wk, to create multiple fea-
ture maps leading to the corresponding single max-pooled features ĉWt , t = 1, . . . , k.
These form a final max-pooled feature vector

ĉW = [ĉW1 , . . . , ĉWk]T , (2.7)

where W = {W1, . . . ,Wk}.
After obtaining ĉW , we add a final softmax layer. Let U ∈ R2×k and bU ∈ R2 be

the parameters of the softmax layer with weighted inputs

sj = Uj ĉW + bUj (2.8)

and output label probability estimates

ŷj =
esj∑
i e

si
, (2.9)

27

www.manaraa.com

where Uj is the j-th row of U, bUj is the j-th element of bU , and yj is the j-th label
for the document corresponding to matrix O.

If D is the set of training document matrices, to learn each classifier we minimize

−
∑
D∈D

log(ŷDpos), (2.10)

where pos = 1 (pos = 2) if the corresponding document is a negative (positive)
instance for document D. The parameters of the CNN (W , b,U, bU and the word
vectors) that minimize this are obtained by calculating the gradient and using back
propagation with the stochastic gradient descent approach. A subtle but crucial
aspect that makes CNNs for NLP tasks different from those used in computer vision
is that the base input components to the CNN, that is, the word vectors, are also
modified using back propagation in addition to the traditional network weights. This
is done by treating the word vector elements as network weights of the first and so
called projection layer (Socher, 2014, Chapter 2) and modifying them just like any
other network weight. However, the vector elements for a given word only change
when the current instance contains that word, which happens often if it is a common
word or if the dataset is large. We used the popular mini-batches (Ngiam et al.,
2011) approach instead of updating parameters for each example. CNNs also warrant
multiple epochs where the learning process goes through the entire training dataset
multiple times in optimizing equation 2.10.

Instead of using the well known l1 or l2 regularization CNNs can be regularized
by using the dropout (Srivastava et al., 2014) option to prevent over-fitting during
training. Specifically, instead of passing sj (from equation 2.8) to the softmax function
in equation 2.9 during training, we actually pass

ŝj = Uj(ĉW ◦ r) + bUj ,

where ◦ refers to element-wise multiplication and r ∈ {0, 1}k is constructed with
each ri drawn from the Bernoulli distribution with parameter p (typically set to 0.5).
Intuitively, this means that gradients are backpropagated only through unmasked
elements where ri = 1. During test time we scale the weights U such that

sj = p(Uj ĉW + bUj).

This down weighting is essential since at training, on average, only half of the U

edges were active, which is not true at test time. Besides dropout, early-stopping is

28

www.manaraa.com

also essential in order to help combat over-fitting. Typically, early-stopping is done
by simply terminating the training of the model when the desired score on a held
out validation dataset does not increase in performance. However, we find that this
typically causes our model to stop training too early. To overcome this issue, training
can be stopped if there were 5 consecutive epochs in the training procedure that did
not increase the validation score. For example, if there was an increase in F-score
after the second epoch on the validation dataset, and training continued for five more
epochs without any further increase, we kept the model from the 2nd epoch. Another
option is to train for a fixed number of epochs and epoch after each epoch. The epoch
which provides the highest validation F-score.

2.8.3 Discussion

In this section, we described a popular CNN architecture used for text classifica-
tion (Kim, 2014; Rios and Kavuluru, 2015b). In future Chapters, we use the basic
components of this CNN and describe three extensions that answers one or more
of the following questions: How should we handle multi-label datasets rather than
multi-class? Is there a better architecture that better handles the extreme label im-
balance experienced in EMR datasets? How do we handle classes that never occurred
in the training dataset?

29

www.manaraa.com

Chapter 3 Extracting Diagnosis Codes using Transfer Learning from
EMRs

As stated in Chapter 1, medical coding datasets are often plagued with the problem
of data sparsity. EMR datasets may contain tens of thousands of records. However,
given the large number of diagnosis and procedure codes, only a few training examples
may be available for each code. It is also common for many diagnosis and procedure
codes to never appear in the training dataset. In this chapter, we introduce a transfer
learning training methodology which improves the performance of CNNs on both
frequently and semi-infrequent occurring codes. The method described in this chapter
does not handle the extreme tail labels in the dataset — labels that occur only a few
times or labels that never appear in the training dataset. However, we show that
transfer learning can substantially improve labels that occur frequently enough for
traditional supervised learning techniques.

Much of the prior work on automated ICD coding has trained models from scratch,
which means the models assume zero prior knowledge about the domain. However,
expert domain knowledge is abundant for various medical applications. If we want to
build models that can predict infrequent labels, then it is essential to take advantage
of all available information we have about the problem. Some of the available knowl-
edge sources are in structured form. For example, the Unified Medical Language
System (UMLS) (Bodenreider, 2004) is a comprehensive thesaurus and ontology of
biomedical concepts. However, much of the available information is in the form of
unstructured text. Medline indexes more than 27 million biomedical research articles.
The articles are available to the general research community via the PubMed search
engine. Some of the research articles contain relevant information about treating spe-
cific diseases or illnesses. Moreover, many of the indexed articles are “case reports”
which describe the symptoms, diagnosis, and treatment of individual patients. We
show an example abstract indexed by Medline in Figure 3.1a, and an example dis-
charge report in Figure 3.1b. If we compare the abstract to the “History of Present
Illness” section in Figure 3.1b, then we can see how this auxiliary data may be useful.
For example, in the figure we observe that the patient experienced atypical headaches
which should have been a sign of a serious illness (i.e., meningioma). Likewise, the
EMR in Figure 3.1b also reports headaches as a symptom.

How can we use Medline indexed articles to improve ICD-9 code prediction? State-
of-the-art results have been achieved in text classification using CNNs with neural

30

www.manaraa.com

Figure 3.1: In Figure 3.1a, we show an example title and abstract from the Medline
indexed paper by Foo et al. (2017). In Figure 3.1b, we show an example snippet from
a discharge summary in the MIMIC III dataset (Johnson et al., 2016).

 Frontal lobe meningioma mimicking preeclampsia:
 A case study.

Foo JY, Davis GK, Brown MA.

We report a case of a left frontal lobe meningioma presenting in a
woman with proteinuric preeclampsia in her first term pregnancy.
The patient had abackground of antepartum migraines that
resolved in the second trimester of pregnancy. Postpartum, she
required urgent surgery and sustained convulsions after surgery.
She had no residual disease and has had another successful
pregnancy. This case highlights the importance of cerebral
imaging in the context of an atypical clinical course of
preeclampsia. Although headaches are common in pregnancy and
usually benign, other, more serious, diagnoses should be
considered with atypical headaches, a change in the nature of the
headache, and headaches that persist despite appropriate
treatment. A full neurological examination including fundoscopy to
exclude papilloedema should be performed and abnormalfindings
require further investigation.

(a)

 Example Discharge Summary

Chief Complaint: Meningioma

Major Surgical or Invasive Procedure:
Right Craniotomy

History of Present Illness:
[**fake firstname**] [**fake lastname**] is a XX-year-old woman,
with longstanding history of rheumatoid arthritis, probable Sweet's
syndrome, and multiple joint complications requiring orthopedic
interventions. She was found to have a right cavernous sinus and
nasopharyngeal mass. Her neurological problem started
[**FAKE DATE**] when she experienced frontal pressure-like
sensations. There was no temporal pattern; but they may occur
more often in the evening. She had fullness in her ear and she also
had a cold coinciding to the onset of her headache. A
gadolinium-enhanced head MRI, performed at

(b)

word embeddings. However, traditional CNN models require a large amount of train-
ing data, and using them for multi-label datasets becomes problematic for large label
spaces because many labels occur infrequently. To overcome this issue, we use trans-
fer learning (Oquab et al., 2014) to take advantage of the biomedical articles indexed
by Medline. Each article indexed by Medline is annotated with a set of Medical Sub-
ject Headings (MeSH). For example, there is a specific MeSH term for “meningioma”
(D008579). In this case, there is a 1-to-many match to the ICD-10-CM codes C70.0
and D32.0. Given the textual similarities observed in Figure 3.1, if we pass an EMR
in Figure 3.1b to a model trained to predict MeSH terms, then the model may pre-
dict D008579. Transfer learning is a machine learning technique which improves the
predictive performance on a new task by transferring knowledge from a different but
related task. We use transfer learning to improve the performance of automated med-
ical coding systems (target task) by “transferring” knowledge acquired from learning
to predict Medical Subject Headings (MeSH) for biomedical articles indexed on Med-
line (source task). Intuitively, instead of forcing our model to learn how to represent
documents for diagnosis code prediction with a limited dataset, we pretrain a CNN
on a larger dataset of Medline abstracts to compute intermediate document represen-
tations useful for assigning diagnosis codes to EMRs. Furthermore, we introduce a

31

www.manaraa.com

simple, yet effective, method to fine-tune the document representations to the target
task without forgetting the information learned from the source task.

Overall, the goal of this chapter is to study the effect of transfer learning for ICD
code prediction. We want to answer the following questions: Can transfer learning
improve CNNs for medical coding? If transfer learning helps, then what is the best
transfer learning method which achieves the largest increase in performance?

We summarize the contributions of this chapter below:

• Our method uses CNNs (Kim, 2014; Baumel et al., 2017) to efficiently train
on examples with more than 5000 words. We also propose a simple, yet effec-
tive, transfer learning method to improve the performance of CNNs for ICD
classification without forgetting information learned on the source task.

• We provide a comprehensive analysis comparing our method with our prior
work on extracting diagnosis codes. Furthermore, besides our proposed transfer
learning approach, we compare several other transfer learning methodologies to
understand what works best for our dataset.

The rest of this chapter is organized as follows: In Section 3.1 we discuss related
work about transfer learning. Section 3.2 presents the dataset used for our study and
discusses the various transfer learning methods we use in our experiments. Next, in
Section 3.3 we compare our method to prior work and present a detailed analysis
of different transfer learning approaches. Finally, in Section 3.4 we summarize our
contributions presented in this chapter.

3.1 Related Work: Transfer Learning

Like neural networks, transfer learning has shown impressive improvements in classifi-
cation applications for computer vision. Oquab et al. (2014) show that parts of neural
networks trained on large datasets can be used to generate features for datasets with
a small number of training examples. More recently, Mou et al. (2016) explored the
application of transfer learning to NLP tasks. In a similar manner to Oquab et al.
(2014), Mou et al. (2016) show that transfered neural network features are useful
for prediction. Al-Stouhi and Reddy (2016) show that transfer learning can improve
classification performance in the presence of label imbalance. This result is promising
given EMR power-law datasets generally contain large imbalances between different
ICD codes.

32

www.manaraa.com

Our method addresses similar concepts as Mou et al. (2016), where they study
how to apply transfer learning to various NLP tasks to understand two questions.
First, does transfer learning help in NLP? Second, what is the best way to imple-
ment transfer learning? Besides the different application domains, we also introduce
a different transfer learning method not explored by Mou et al. (2016). Al-Stouhi
and Reddy (2016) also emphasizes the use of transfer learning-like methods to im-
prove problems with label imbalance. Compared to our work, Al-Stouhi and Reddy
(2016) do not take advantage of recent advances in neural networks, and instead use
a boosting-based classifier. Howard and Ruder (2018) show that transfer learning ap-
proaches produce significant improvements by training only a language model on the
source domains. This is a useful method for taking advantage of unlabeled data.

Recently, transfer learning has been shown to be useful in biomedical research. Wiens
et al. (2014) discuss issues with model generalization across different hospitals. For
example, different hospitals may have different norms, or even EMR structures, which
cause models to perform poorly if the model is trained on data from a different hos-
pital. Choi et al. (2016) use transfer learning to improve model performance across
different hospitals; however they model disease progression rather than performing
text classification. Transfer learning has also been shown to improve biomedical re-
lation extraction Sahu and Anand (2017). Sometimes the target data has the same
classes as the source dataset. However, the data distributions vary in such a way
that training on the source dataset does not generalize well. In Rios et al. (2018),
we propose a transfer learning-like technique using domain adaptation for biomedical
relation extraction. This method assumes no labeled training data is available for the
target dataset.

3.2 Materials and Methods

Our dataset contains 71,463 EMRs and a total of 7,485 unique diagnosis codes based
on in-patient visits to the University of Kentucky (UKYLarge) hospital between 2011
to 2012. Each EMR is annotated with a set of ICD-9 codes1. Following our prior
work (Kavuluru et al., 2015), and similar to Chapter 2.7, we preprocess our data
by truncating all ICD-9 codes of the form abc.xy to abc.x and we remove all codes
that occur in less than 50 EMRs. Truncating and removing the most infrequent
ICD-9 diagnosis codes results in a total of 1,231 codes which we use for classification.

1We realize that US health care facilities have moved to ICD-10-CM as of Oct 1, 2015. Given
this is a much recent move, it has limited the availability of training data with ICD-10 codes. Hence
as proof of concept for transfer learning, we experimented with ICD-9 codes.

33

www.manaraa.com

Figure 3.2: ICD-9 code frequency distribution of the UKYLarge EMR dataset.

 400 labels occur
in < 1% of the

EMRs
N

um
be

r o
f D

oc
um

en
ts

Sorted Label ID

1 label occurs
in 27k EMRs

10e1

10e2

10e3

10e4

10e5

0
200

400
600

800
1200

1000
1400

Table 3.1: Transfer learning dataset statistics.

Medline UKLarge

Instances 1,600,000 71,463
Labels 27,150 1,231
Label Cardinality 12.62 7.4
Avg # Words per Instance 147 5,303
Code Combinations – 60,238

Intuitively, by truncating the labels and removing codes that occur infrequently, we
reduce the extreme tail of the frequency distribution — codes that only occur a few
times in the dataset. Traditional NN-based methods will not be able to predict labels
that occur only a few times, even with transfer learning. We explore the extreme tail
labels in more detail in Chapter 5. From the full dataset, 2000 EMRs are randomly
removed to create a validation dataset and 3000 EMRs are held-out for final testing;
the remaining EMRs (over 65,000) are used for training. The frequency distribution
over all codes is available in Figure 3.2. We find that 1 diagnosis code occurs in
more than 27k EMRs which is nearly 38% of the entire dataset. 400 diagnosis codes
occur in no more than 100 EMRs. Basic statistics about the datasets are shown in
Table 3.1.

34

www.manaraa.com

Figure 3.3: The parameters learned in the source task are transferred to the target
task model and fixed while the target task specific model parameters are updated
during training.

EM CV MAX

EM CV MAX

SIG

EM: Embedding Matrix
CV: Convolution Layer
MAX: Max-pooling Layer
FC: Fully Connected Layer
SIG: Sigmoid Layer
CON: Concatenate

Source Task (MeSH)

Target Task (ICD-9)

Copy parameters from
the source task to the
target task.

SIGPubMed

EMRs FC

EM CV MAX

CON

Fixed

Fine-tuned

3.2.1 Overview

Figure 3.3 provides a high-level overview of our method. Transfer learning involves
training two models, one model for a source task (stage 1) and the other for a target
task (stage 2). Each model is trained on a different dataset. For the source task (stage
1), we collected 1.6 million Medline citations (title and abstracts) and trained a CNN
model to predict MeSH terms. All of the parameters of the source task model, except
for the output layer, are used to initialize the parameters for the target task model.
Finally, for stage 2, the target model is trained on the UKYLarge EMR dataset to
predict ICD codes.

3.2.2 Convolutional Neural Networks for Text Classification

We use the CNN model described in Chapter 2 as our base model to represent each
EMR. Specifically, we use the max-pooled features defined by Equation 2.7. For
simplicity we refer to this vector as

g(x) = ĉW

where g(x) ∈ Rk. k is the number of convolution filter widths times the number filters
trained for each width. Furthermore, the remainder of this chapter will refer to the
convolution filters W which form the convolution layer as “CV” and the embedding
layer (all the word vectors) is referred to as “EM”.

35

www.manaraa.com

3.2.3 Stage 1: Training on Source

To use transfer learning techniques, we first train our model on the source data. Given
g(x), we pass it through multiple sigmoid outputs, one for each label

ŷS = sigmoid(WS g(x) + bS)

where WS ∈ RLS×k, bS ∈ RLS , and LS is number of source labels. The sigmoid
function is defined as

sigmoid(x) =
1

1 + e−x
.

For multi-label classification, sigmoid units are required rather than the softmax layer
used for multi-class classification. Each element, ŷi, produces a score for each label
using the sigmoid squashing function which constrains the score to the range [0, 1].

We train over all labels jointly by minimizing the multi-label binary cross-entropy
loss (Nam et al., 2014a)

L = −
LS∑
l

yllog(ŷl) + (1− yl)log(1− ŷl).

where Ls is the number of labels in the source task. The loss, JCE, can be optimized
using stochastic gradient descent (SGD).

3.2.4 Stage 2: Transfer Learning

We experiment with three traditional transfer learning approaches and introduce a
new method. The three traditional methods take the model trained on the source
dataset and replace the output layer with two additional layers. First, given g(x),
the max-pooled feature vector, we pass it through a fully-connected layer

h = ReLU(Wa g(x) + ba) (3.1)

where Wa ∈ Ra×k and ba ∈ Ra. In transfer learning literature, this layer is known
as as an “adaptation layer” (Oquab et al., 2014). The adaptation layer learns to
transform the mid-level features optimized on the source dataset to better represent
the target data.

Next, h is passed to a target specific output layer

ŷ = sigmoid(Wo h+ bo) (3.2)

36

www.manaraa.com

where Wo ∈ RL×a, bo ∈ RL, and L is the total number of target labels.
As previously stated, we experiment with three recently proposed transfer learning

methods. Each method shares the same overall CNN architecture. However, they
vary based on which parameters are updated while training on the target dataset.
We describe the different variations below:

• EM[7] CV[7] – For this variation, all parameters used during stage 1 including
the word vectors EM, and convolution weights CV are not updated during the
stage 2 training process. However, The adaptation layer parameters, Wa and
ba, and the target output layer parameters, Wo and bo, are updated.

• EM[7] CV[3] – This method is initialized with the CNN weights after Stage 1.
Similar to the previous method, we keep the word embeddings fixed. However,
the convolution parameters CV are fine-tuned during stage 2.

• EM[3] CV[3] – The third method expands on EM[7] CV[3] by fine-tuning both
the word embeddings and convolution parameters while training on the target
dataset.

We also introduce a simple, yet effective, transfer learning method. Transfer learn-
ing methods that fine-tune the weights transferred from the source task tend to forget
what they have learned from the source dataset (Li and Hoiem, 2017; Kirkpatrick
et al., 2017). Generally, this issue is measured by testing how well the fine-tuned
NNs perform on the original source task after fine-tuning. In our case, we are only
concerned about predictive performance on the target task, assigning ICD diagnosis
codes to EMRs. Therefore, we do not care how well our model performs on the source
dataset. However, we hypothesize if we forget information about the source dataset,
our model will not generalize as well. We believe this given the high-level of similar-
ity between the two domains. To overcome the issue of catastrophic forgetting, we
propose the method EM[3] CV[3] + EM[7] CV[7]. Specifically, we make two copies
of the word embeddings and convolution parameters learned during stage 1. The two
copies are used to generate two mid-level representations of each document, g(x) and
g′(x). Both representations are concatenated

h2 = g(x) || g′(x)

where h2 ∈ R2k. h2 is then passed to the adaptation layer defined in Equation 3.1,
then to the output layer defined by Equation 3.2. During training, we only opti-

37

www.manaraa.com

mize the word embedding and convolution parameters used to generate g(x). The
parameters that create g′(x) are not updated.

3.2.5 Word Dropout

EMRs in the UKYLarge dataset contain more than 5000 words per instance on av-
erage. A few examples in the dataset contain more than 10000 words. Training
on lengthy instances can take a long time and uses a lot of memory on the GPU.
To improve training efficiency, we use word dropout (Iyyer et al., 2015). Similar to
dropout which randomly sets some unit weights to zero to avoid overfitting, during
training, word dropout completely removes words from an EMR at random. Besides
reducing the overall training time, word dropout also reduces overfitting. Intuitively,
by randomly removing words from document, we artificially create new documents.
For long documents, we assume that removing words from the document will not
substantially change the overall meaning of what the EMRs describe.

3.2.6 Ensemble

It is possible for our model to overfit to infrequently occurring labels. Wallace et al.
(2011) show that bagging multiple oversampled classifiers improves the performance
of infrequent labels in the multi-class setting. However, oversampling is not trivial
in the multi-label setting. Averaging multiple NNs trained with different seeds is
a well known way to improve performance (Huang et al., 2017) of NNs in general.
Therefore, we train Γ different models, each initialized with a different random seed.
At test time, the predictions for each model are averaged

ŷe =
1

Γ

Γ∑
i=1

ŷi

where ŷe ∈ RL and ŷi represents the predictions for the i-th model.

3.3 Experiments

In this section, we compare our work with prior medical coding methods on the
UKYLarge dataset. We also analyze how our transfer learning model compares to
related methods.

38

www.manaraa.com

3.3.1 Implementation Details

Our model uses convolution filter widths that span 3, 4, and 5 words. We train 300
filters for each filter width. Therefore, the size of the max-pooled feature vectors g(x)
will have a dimensionality of 900. The word embedding dimensionality is set 300. We
use standard dropout before the final output layer with a dropout probability of 0.5.
The dropout probability for word dropout is set to 0.3. Furthermore, we truncate all
documents to a max length of 6000 words. The model is optimized using the SGD
variant AdaDelta (Zeiler, 2012) with a learning learning rate of 0.001 and a minibatch
size of 50.

3.3.2 Baseline Methods

We compare against three different methods:

1. Logistic Regression (LR) trained on tf-idf weighted n-grams,

2. LR + L2R + NERC which uses label scores from LR, the k-nearest neighbor
similarity scores, and named entity recognition based codes (NERC) extracted
using NLM’s MetaMap as features to a second-level stacking-like learning-to-
rank (L2R) method,

3. and a model averaging ensemble with three CNNs without transfer learning.

We also compare two versions of each transfer learning method, an ensemble model
that averages 3 models trained with different seeds, and a single model with out
model averaging. We evaluate our method using the popular micro F-score measure.
Because we are not only interested in predicting frequent ICD codes, we also use macro
F-score which gives equal weight to all labels independent of the label frequency. Both
of these metrics are defined in Chapter 2.6.

3.3.3 Layer by Layer Analysis

In Table 3.2 we compare the different transfer learning variations. We find that updat-
ing parameters always outperforms transfer learning methods that keep parameters
fixed. For example, EM[7] CV[3] outperforms EM[7] CV[7] by more than 3% with
respect to micro F-Score. Likewise, EM[3] CV[3] improves by more than 3% over
the micro F-Score obtained by EM[7] CV[3]. Without ensembling, we find only a
small improvement in micro F-Score using the EM[3] CV[3] + EM[7] CV[7] method.

39

www.manaraa.com

Table 3.2: Layer-by-layer results for various transfer learning methodologies.

Micro F-Score Macro F-Score

EM[7] CV[7] 46.5 23.6
EM[7] CV[3] 49.8 23.8
EM[3] CV[3] 53.1 24.2
EM[3] CV[3] + EM[7] CV[7] 53.5 26.0
EM[7] CV[7] AVG 48.3 25.5
EM[7] CV[3] AVG 51.3 25.5
EM[3] CV[3] AVG 54.1 25.8
EM[3] CV[3] + EM[7] CV[7] AVG 56.7 28.6

Table 3.3: Results comparing conventional approaches, CNNs, and CNNs with trans-
fer learning

Micro F-Score %-increase Macro F-Score %-increase

LR (Kavuluru et al., 2015) 48.2 – 19.8 –
LR + L2R (Kavuluru et al., 2015) 49.5 1.3% 21.2 1.4%
LR + L2R + NERC (Kavuluru et al., 2015) 49.9 1.7% 23.0 3.2%

EM[3] CV[3] + EM[7] CV[7] 53.5 5.3% 26.0 6.2%
EM[3] CV[3] + EM[7] CV[7] AVG 56.7 8.5% 28.6 8.8%

However, we find nearly a 2% improvement with respect to macro F-score. If updat-
ing all the parameters outperforms methods which fixes the weights, then does this
imply that catastrophic forgetting is not an issue for our task? The difference in
macro F-score between EM[3] CV[3] and EM[7] CV[7] is only 0.6%. Yet, EM[3]
CV[3] + EM[7] CV[7] improves the macro F-score over EM[3] CV[3] by nearly 2%.
This result suggests that forgetting source task information may not negatively im-
pact infrequent codes when we update the parameters on the target task. However,
it also does not improve the performance of infrequent codes either. When we update
the weights and store an extra copy of the source copy paramters (EM[3] CV[3] +
EM[7] CV[7]), then it generalizes better across all ICD-9 diagnosis codes regardless
of the code frequency in the dataset.

3.3.4 Comparison with prior work

In Table 3.3 we compare our proposed transfer learning method with prior work on the
UKYLarge EMR dataset. We improve over LR by more than 8% for both the micro
and macro F-Scores. Our ensemble method improves on "LR + L2R + NERC" by

40

www.manaraa.com

Figure 3.4: This figure compares the macro F-scores on the 10% least frequent codes
to the macro F-score on the 10% most frequent ICD-9 diagnosis codes.

15

6260

10
10

20

30

40

50

60

70

0

EM[✔] CV[✔] + EM[✘] CV[✘]

EM[✔] CV[✔]

Bottom 10%

Av
er

ag
e

M
ac

ro
-F

1

Label Frequency
Top 10%

nearly 7% micro F-Score which suggests that NNs can better predict frequent labels.
Likewise, the ensemble approach improves on the prior best macro F-Score by more
than 5%. Even without ensembling, we improve over LR + L2R + NERC by 3%
with respect to the macro F-score. Overall, we find that even in the presence of
data sparsity, NNs can outperform traditional text classification methods when we
use transfer learning.

3.3.5 Label Frequency Analysis

In Figure 3.4 we analyze the macro F-Scores of the 10% least frequent and 10% most
frequent diagnosis codes in the UKYLarge dataset. While calculating the macro F-
score over all labels gives some insight about how our method performs on infrequent
labels, if the frequent and infrequent codes are jointly compared, then it confounds its
interpretation. We find that our proposed method improves infrequent label perfor-
mance by 5%. The macro-averaged performance improves by 2% for frequent classes.
Compared to EM[3] CV[3], these results suggests that the source information EM[3]
CV[3] + EM[7] CV[7] avoids forgetting has a greater impact on infrequent codes.

3.4 Conclusion

In this chapter, we demonstrated the potential of transfer learning using CNNs for
biomedical text classification over conventional CNNs, and other traditional ensemble

41

www.manaraa.com

approaches. For comparative purposes, we restricted our dataset to labels occurring
at least 50 times after preprocessing. In this setting most neural networks can reliably
be trained to predict all codes. However, even though this section used larger label
spaces compared to Chapter 2.7, this reduced label space is not realistic. In Chapter 5
we develop a method which can handle the full label set — including codes occurring
much less than 50 times.

42

www.manaraa.com

Chapter 4 EMR Coding with Semi-Parametric Multi-Head Matching
Networks

Are there neural architectures that can better handle the label distributions (Fig-
ure 1.2) encountered in EMR datasets? Recent advances in extreme multi-label clas-
sification have proven to work well for large label spaces. Many of these methods (Yu
et al., 2014; Bhatia et al., 2015; Liu et al., 2017) focus on creating efficient multi-
label models that can handle 104 to 106 labels. While these models perform well in
large label spaces, they don’t necessarily focus on improving prediction of infrequent
labels. Typically, they optimize for the top 1, 3, or 5 ranked labels by focusing on
the P@1, P@3, and P@5 evaluation measures. The labels ranked at the top usually
occur frequently in the dataset and it is not obvious how to handle infrequent la-
bels. One solution would be to ignore the rare labels. However, when the majority
of medical codes are infrequent, this solution is unsatisfactory. In Chapter 3, we
improve traditional CNNs by taking advantage of external biomedical textual data.
Yet, we ignore labels which occur less than 50 times in the training dataset. In this
chapter we develop a novel neural network which can better handle infrequent labels.
Furthermore, we analyze various neural-based methods across the entire spectrum of
labels independent of label frequency.

While neural networks have shown great promise for text classification (Kim,
2014; Yang et al., 2016; Johnson and Zhang, 2017), the label imbalances associated
with EMR coding hinder their performance. In Chapter 3, we focused on codes that
occurred at least 50 times in the training dataset. Imagine if a dataset contains only
one training example for every class leading to one-shot learning, a subtask of few-shot
learning. How can we classify a new instance? A trivial solution would be to use a
non-parametric 1-NN (1 nearest neighbor) classifier. 1-NN does not require learning
any label specific parameters and we only need to define features to represent our
data and a distance metric. Unfortunately, defining good features and picking the
best distance metric is nontrivial. Instead of manually defining the feature set and
distance metric, neural network training procedures have been developed to learn
them automatically (Koch et al., 2015). For example, matching networks (Vinyals et
al., 2016) can automatically learn discriminative feature representations and a useful
distance metric. Therefore, using a 1-NN prediction method, matching networks
work well for infrequent labels. However, researchers typically evaluate matching
networks on multi-class problems without label imbalance. For EMR coding with

43

www.manaraa.com

extreme label imbalance with several labels occurring thousands of times, traditional
parametric neural networks (Kim, 2014) should work very well on the frequent labels.
In this chapter, we introduce a new variant of matching networks (Vinyals et al., 2016;
Snell et al., 2017a) to address the EMR coding problem. Specifically, we combine the
non-parametric idea of kNN and matching networks with traditional neural network
text classification methods to handle both frequent and infrequent labels encountered
in EMR coding.

Overall, we make the following contributions in this chapter:

• We propose a novel semi-parametric neural matching network for diagnosis/procedure
code prediction from EMR narratives. Our architecture employs ideas from
matching networks (Vinyals et al., 2016), multiple attention (Lin et al., 2017),
multi-label loss functions (Nam et al., 2014a), and CNNs for text classifica-
tion (Kim, 2014) to produce a state-of-the-art EMR coding model.

• We evaluate our model on publicly available EMR datasets to ensure repro-
ducibility and benchmarking; we also compare against prior state-of-the-art
methods in EMR coding and demonstrate robustness across multiple standard
evaluation measures.

• We analyze and measure how each component of our model affects the perfor-
mance using ablation experiments.

4.1 Related Work: Memory Augmented Neural Networks

Memory networks (Weston et al., 2014) have access to external memory, typically
consisting of information the model may use to make predictions. Intuitively, infor-
mative memories concerning a given instance are found by the memory network to
improve its predictive power. Kamra et al. (2017) use memory networks to fix issues
of catastrophic forgetting. They show that external memory can be used to learn
new tasks without forgetting previous tasks. Memory networks are now applied to a
wide variety of natural language processing tasks, including question answering and
language modeling (Sukhbaatar et al., 2015; Bordes et al., 2015; Miller et al., 2016).

Matching networks (Vinyals et al., 2016; Snell et al., 2017a) have recently been
developed for few/one-shot learning problems. We can interpret matching networks
as a key-value memory network (Miller et al., 2016). The “keys” are training instances,
while the “values” are the labels associated with each training example. Intuitively, the
concept is similar to a hashmap. The model will search for the most similar training

44

www.manaraa.com

Figure 4.1: The matching CNN architecture. For each input instance, x, we search a
support set using different representations of x and use the similar support instances
and auxiliary features to the output layer.

xCNN
g(sk)

V65.1
363.3
433.1
...
...
521.2

...

...
Support

Set

Input
Instance

Predict
LabelsCNN

g(x)

pi(x)

h(sk)
...

q

instance to find its respective “value”. Also, matching networks can be interpreted as
a kNN based model that automatically learns an informative distance metric. Altae-
Tran et al. (2017) used matching networks for drug discovery, a problem where data is
limited. Finally, memory networks (Prakash et al., 2017) have recently been used for
diagnosis coding. However, we would like to note two significant differences between
the memory network from Prakash et al. (2017) and our model. First, they don’t use
a matching network and their memories rely on extracting information about each
label from Wikipedia. In contrast, our model does not use any auxiliary information.
Second, they only evaluate on the 50 most frequent labels, while we evaluate on all
the labels in the dataset.

4.2 Our Architecture

An overview of our model is shown in Figure 4.1. Our model architecture has two
main components.

1. We augment a CNN with external memory over a support set S, which consists
of a small subset of the training dataset. The model searches the support set to
find similar examples with respect to the input instance. We make use of the
homophily assumption that similar instances in the support set are coded with
similar labels. Therefore, we use the related support set examples as auxiliary
features. The similar instances are chosen automatically by combining ideas

45

www.manaraa.com

from metric learning and neural attention. We emphasize that unlike in a
traditional k-NN setup, we do NOT explicitly use the labels of the support set
instances. The support set essentially enriches and complements the features
derived from the input instance.

2. Rather than predicting labels by thresholding, we rank them and select the
top k labels specific to each instance where k is predicted using an additional
output unit (termed MetaLabeler). We train the MetaLabeler along with the
classification loss using a multi-task training scheme.

Before we go into more specific details of our architecture, we introduce some notation.
Let X represent the set of all training documents and x be an instance of X. Likewise,
let S represent the set of support instances and s be an instance of S. We let L be the
total number of unique labels. Our full model is described in following subsections.

4.2.1 Convolutional Neural Networks

Similar to Chapter 3, we use a standard CNN consisting of an embedding layer, a
convolution layer, a max-pooling layer, and an output layer (Collobert et al., 2011;
Kim, 2014). For consistency with Chapter 3, we represent each instance as

g(x) = ĉW

where ĉW represents the max-pooled feature vectors for the instance x first defined
by Equation 2.7.

4.2.2 Multi-Head Matching Network

Using the support set and the input instance, our goal is to estimate P (y|x, S).
The support set S is chosen based on nearest neighbors and its selection process
is discussed in Section 4.2.4. Among instances in S, our model finds informative
support instances with respect to x and creates a feature vector using them. This
feature vector is combined with the input instance to make predictions.

First, each support instance sk ∈ S is projected into the support space using a
simple single-layer feed forward NN as

h(g(sk)) = ReLU(Ws g(sk) + bs),

46

www.manaraa.com

where Ws ∈ Rz×v and bs ∈ Rz. Likewise, we project each input instance x into the
input space using a different feed forward neural network,

pi(g(x)) = ReLU(Wi
α g(x) + bi

α),

where Wi
α ∈ Rz×v and bi

α ∈ Rz. Compared to the support set neural network
where we use only a single network, for the input instance we have u projection
neural networks. This means we have u versions of x, an idea that is similar to
self-attention (Lin et al., 2017), where the model learns multiple representations of
an instance. Here each pi(g(x)) represents a single “head” or representation of the
input x. Using different weight matrices, [W1

α, . . . ,W
u
α] and [b1

α, . . . ,b
u
α], we create

different representations of x (multiple heads). For both the input multi-heads and
the support instance projection, we note that the same CNN is used (also indicated
in Figure 4.1) whose output is subject to the feed forward neural nets outlined thus
far in this section.

Rather than searching for a single informative support instance, we search for
multiple relevant support instances. For each of the u input instance representations,
we calculate a normalized attention score

Ai,k =
exp(−d(pi(g(x)), h(g(sk)))∑

sk′∈S
[
exp(−d(pi(g(x)), h(g(sk′)))

]
where Ai,k represents the score of the k-th support example with respect to the i-th
input representation pi(g(x)) and

d(xi,xj) = ∥xi − xj∥22,

is the square of the Euclidean distance between the input and support representations.
Next, the normalized scores are aggregated into a matrix A ∈ Ru×|S|. Then, we

create a feature vector
q = vec(AS) (4.1)

where q ∈ Ruz, vec is the matrix vectorization operator, and S ∈ R|S|×z is the support
instance CNN feature matrix whose i-th row is h(g(si)) for i = 1, . . . , |S|. Intuitively,
multiple weighted averages of the support instances are created, one for each of the
u input representations. The final feature vector,

h = q || g(x), (4.2)

47

www.manaraa.com

is formed by concatenating the CNN representation of the input instance x and the
support set feature vector q.

Finally, the output layer for L labels involves computing

ŷ = P (y|x, S) = sigmoid(Wc h+ bc) (4.3)

where Wc ∈ RL×(uz+v), bc ∈ RL. Because we use a sigmoid activation function, each
label prediction (ŷi) is in the range from 0 to 1.

4.2.3 MetaLabeler

The easiest method to convert ŷ into label predictions is to simply threshold each
element at 0.5. However, most large-scale multi-label problems are highly imbalanced.
When training using binary cross-entropy, the threshold 0.5 is optimized for accuracy.
Therefore, our predictions will be biased towards 0. A simple way to fix this problem
is to optimize the threshold value for each label. Unfortunately, searching for the
optimal threshold of each label is computational expensive in large label spaces. Here
we train a regression based output layer

r̂ = ReLU(Wr g(x) + br)

where r̂ estimates the number of labels x should be annotated with. At test time, we
rank each label by its score in ŷ. Next, r̂ is rounded to the nearest integer and we
predict the top r̂ ranked labels.

4.2.4 Training

To train our model, we need to define two loss functions. First, following recent
working on multi-label classification with neural networks (Nam et al., 2014b), we
train using a multi-label cross-entropy loss. The loss is defined as

Lc =
L∑
i=1

[
− yi log(ŷi)− (1− yi) log(1− ŷi)

]
,

which sums the binary cross-entropy loss for each label. The second loss is used to
train the MetaLabeler for which we use the mean squared error

Lr = ∥r− r̂∥22

48

www.manaraa.com

where r is the vector of correct numbers of labels and r̂ is our estimate. We train
these two losses using a multi-task learning paradigm (Collobert et al., 2011).

Similar to previous work with matching networks (Vinyals et al., 2016; Snell et
al., 2017a), “episode” or mini-batch construction can have an impact on performance.
In the multi-label setting, episode construction is non-trivial. We propose a simple
strategy for choosing the support set S which we find works well in practice. First,
at the beginning of the training process we loop over all training examples and store
g(x) for every training instance. We will refer to this set of vectors as T . Next,
for every step of the training process (for every mini-batch M), we search T \ M

to find the e nearest neighbors (using Euclidean distance) per instance to form our
support set S. Likewise, we add e random examples from T \M to the support set.
Therefore, our support set S contains up to |M |e + e instances. The purpose of the
random examples is to ensure the distance metric learned during training (captured
by improving representations of documents as influenced by all network parameters)
is robust to noisy examples.

4.2.5 Matching Network Interpretation

If we do not use the support set label vectors, then what is our network learning? To
answer this question we directly compare the matching network formulation to our
method. Matching networks can be expressed as

ŷ =
∑
sk∈S

a(x, sk)ysk

where a(,) is the attention/distance learned between two instances, k indexes
each support instance, and yk is a one-hot encoded vector. a(,) is equivalent to A1,k

assuming we use a single head. Traditional matching networks use one-hot encoded
vectors because they are evaluated on multi-class problems. EMR coding is a multi-
label problem. Hence, yk is a multi-hot encoded vector. Moreover, with thousands
of labels, it is unlikely even for neighboring instance pairs to share many labels; this
problem is not encountered in the multi-class setting. We overcome this issue by
learning new output label vectors for each support set instance. Assuming a single
head, our method can be re-written as

ŷ = sigmoid(W1
c g(x) + bc +

∑
sk∈S

a(x, sk) ỹsk), (4.4)

where ỹk is the learned label vector for support instance s. Next, we define ỹk, the

49

www.manaraa.com

Table 4.1: This table presents the number of training examples (# Train), the number
of test examples (# Test), label cardinality (LC), and the average number of instances
per label (AI/L) for the MIMIC II and MIMIC III datasets.

Train # Test # Labels LC AI/L

MIMIC II 18822 2282 7042 36.7 118.8
MIMIC III 37016 2755 6932 13.6 80.8

learned support set vectors, as

ỹsk = W2
c h(g(sk)) (4.5)

where both W1
c and W2

c are submatrices of Wc. Using this reformulation, we can
now see that our method’s main components (equations (4.1)-(4.3)) are equivalent to
this more explicit matching network formulation (equations (4.4)–(4.5)). Intuitively,
our method combines a traditional output layer – the first half of equation 4.4 – with
a matching network where the support set label vectors are learned to better match
the labels of their nearest neighbors.

4.3 Experiments

In this section we compare our work with prior state-of-the-art medical coding meth-
ods. In Section 4.3.1 we discuss the two publicly available datasets we use and de-
scribes the implementation details of our model. We summarize the various baselines
and models we compare against in Section 4.3.3. The evaluation metrics are described
in Section 4.3.4. Finally, we discuss how our method performs in Section 4.3.5.

4.3.1 Datasets

EMR data is generally not available for public use especially if it involves textual
notes. Therefore, we focus on the publicly available Medical Information Mart for
Intensive Care (MIMIC) datasets for benchmarking purposes. We evaluate using two
versions of MIMIC: MIMIC II (Lee et al., 2011) and MIMIC III (Johnson et al.,
2016), where the former is a relatively smaller and older dataset and the latter is the
most recent version. Following prior work (Perotte et al., 2013; Vani et al., 2017),
we use the free text discharge summaries in MIMIC to predict the ICD-9-CM codes.
The dataset statistics are shown in Table 4.1.

50

www.manaraa.com

For comparison purposes, we use the same MIMIC II train/test splits as Perotte
et al. (2013). Specifically, we use discharge reports collected from 2001 to 2008 from
the intensive care unit (ICU) of the Beth Israel Deaconess Medical Center and predict
both diagnosis and procedure codes. Following Perotte et al. (2013), the labels for
each discharge summary are extended using the parent of each label in label set.
The parents are based on the ICD-9-CM hierarchy. We use the hierarchical label
expansion to maximize the prior work we can compare against.

The MIMIC III dataset has been extended to include health records of patients
admitted to the Beth Israel Deaconess Medical Center from 2001 to 2012 and hence
provides a test bed for more advanced learning methods. Unfortunately, it does not
have a standard train/test split to compare against prior work given we believe we are
the first to look at it for this purpose. Hence, we use both MIMIC II and MIMIC III
for comparison purposes. Furthermore, we do not use the hierarchical label expansion
on the MIMIC III dataset and we only predict diagnosis codes for MIMIC III.

Before we present our results, we discuss an essential distinction between the
MIMIC II and MIMIC III datasets. Particularly, we are interested in the differences
concerning label imbalance. From Table 4.1, we find that MIMIC III has almost
twice as many examples compared to MIMIC II in the dataset. However, MIMIC
II on average has more instances per label. Thus, although MIMIC III has more
examples, each label is used fewer times on average compared to MIMIC II. The
reason for this is because of how the label sets for each instance were extended using
the ICD-9 hierarchy in MIMIC II.

4.3.2 Implementation Details

Preprocessing: Each discharge summary was tokenized using a simple regex tok-
enization scheme (\w\w+). Also, each word/token that occurs less than five times
in the training dataset was replaced with the UNK token.
Model Details: For our CNN, we used convolution filters of size 3, 4 and 5 with
300 filters for each filter size. We used 300 dimensional skip-gram (Mikolov et al.,
2013b) word embeddings pre-trained on PubMed. The Adam optimizer (Kingma and
Ba, 2014) was used for training with the learning rate 0.0001. The mini-batch size
was set to 4, e – the number of nearest neighbors per instance – was set to 16, and
the number of heads (u) is set to 8. Our code is available at: https://github.com/
bionlproc/med-match-cnn

51

https://github.com/bionlproc/med-match-cnn
https://github.com/bionlproc/med-match-cnn

www.manaraa.com

4.3.3 Baseline Methods

In this chapter, we focused on comparing our method to state-of-the-art methods
for diagnosis code prediction such as grounded recurrent neural networks (Vani et
al., 2017) (GRNN) and multi-label CNNs (Baumel et al., 2017). We also compare
against traditional binary relevance methods where independent binary classifiers
(L1-regularized linear models) are trained for each label. Next, we compare against
hierarchical SVM (Perotte et al., 2013), which incorporates the ICD-9-CM label hi-
erarchy. Finally, we also report the results of the traditional matching network with
one modification: We train the matching network with the multi-label loss presented
in Section 4.2.4 and threshold using the MetaLabeler described in Section 4.2.3.

We also present two versions of our model: Match-CNN and Match-CNN Ens.
Match-CNN is the multi-head matching network introduced in Section 4.2. Match-
CNN Ens is an ensemble that averages three Match-CNN models, each initialized
using a different random seed.

4.3.4 Evaluation Metrics

We evaluate our method using a wide variety of standard multi-label evaluation met-
rics. We use the popular micro and macro averaged F1 measures to assess how our
model (with the MetaLabeler) performs when thresholding predictions. For problems
with large labels spaces that suffer from significant imbalances in label distributions,
the default threshold of 0.5 generally performs poorly (hence our use of MetaLabeler).
To remove the thresholding effect bias, we also report different versions of the area
under the precision-recall (AUPRC) and receiver operating characteristic (AUCOC)
curves. Finally, in a real-world setting, our system would not be expected to replace
medical coders. We would expect medical coders to use our system to become more
efficient in coding EMRs. Therefore, we would rank the labels based on model con-
fidence and medical coders would choose the correct labels from the top few. To
understand if our system would be useful in a real-world setting, we evaluate with
precision at k (P@k) and recall at k (R@k). Having high P@k and R@k are critical
to effectively encourage the human coders to use and benefit from the system. These
evaluation metrics are explained in Chapter 2.

4.3.5 Results

We show experimental results on MIMIC II in Table 4.2. Overall, our method im-
proves on prior work across a variety of metrics. With respect to micro F1, we

52

www.manaraa.com

Table 4.2: Results for the MIMIC II dataset. Models marked with * represent our
custom implementations.

F1 AUC (PR) AUC (ROC) P@k R@k
Prec. Recall Micro Macro Micro Macro Micro Macro 8 40 8 40

Flat SVM (Perotte et al., 2013) 86.7 16.4 27.6 – – – – – – – – –
Hier. SVM (Perotte et al., 2013) 57.7 30.1 39.5 – – – – – – – – –
Logistic (Vani et al., 2017) 77.4 39.5 52.3 04.2 54.1 12.5 91.9 70.4 91.3 57.2 16.9 52.8
Attn BoW (Vani et al., 2017) 74.5 39.9 52.0 02.7 52.1 07.9 97.5 80.7 91.2 54.9 16.9 50.8
GRU-128 (Vani et al., 2017) 72.5 39.6 51.2 02.7 52.3 08.2 97.6 82.7 90.6 54.1 16.8 50.1
BiGRU-64 (Vani et al., 2017) 71.5 36.7 48.5 02.1 49.3 07.1 97.3 81.1 89.2 52.2 16.5 48.3
GRNN-128 (Vani et al., 2017) 75.3 47.2 58.0 05.2 58.7 12.6 97.6 81.5 93.0 59.2 17.2 54.8
BiGRNN-64 (Vani et al., 2017) 76.1 46.6 57.8 05.4 58.9 13.1 97.5 79.8 92.5 59.6 17.2 55.2
CNN (Baumel et al., 2017) * 81.0 40.3 53.8 03.1 59.9 12.7 97.1 75.9 93.1 58.5 20.7 58.6
Matching Network * 43.9 38.8 41.2 01.4 39.4 03.4 89.3 55.1 79.3 42.7 17.2 42.5
Match-CNN (Ours) 60.5 56.1 58.2 06.4 61.2 14.8 97.7 79.2 93.0 58.6 20.7 59.0
Match-CNN Ens. (Ours) 61.6 56.7 59.1 06.6 62.3 15.7 97.7 79.3 93.5 59.4 20.8 59.8

Table 4.3: Results for the MIMIC III dataset. Models marked with * represent our
custom implementations.

F1 AUC (PR) AUC (ROC) P@k R@k
P R Micro Macro Micro Macro Micro Macro 8 40 8 40

Logistic (Vani et al., 2017) * 71.1 24.2 36.1 02.6 41.9 14.7 96.1 75.1 55.4 21.1 41.4 68.6
CNN (Baumel et al., 2017) * 72.6 24.6 36.7 02.1 37.6 09.5 94.2 69.7 53.4 19.6 39.5 63.6
Matching Network * 24.8 23.7 24.2 00.8 18.3 02.8 82.3 55.4 31.0 12.8 23.1 43.1
Match-CNN (Ours) 46.6 44.7 45.6 04.1 42.1 11.9 96.3 72.6 55.7 20.6 41.3 67.0
Match-CNN Ens. (Ours) 48.8 44.9 46.8 04.3 44.1 12.9 96.5 76.0 57.0 21.1 42.2 68.3

improve upon GRNN-128 by over 1%. Also, while macro-F1 is still low in general,
we also improve macro F1 compared to state-of-the-art neural methods by more than
1%. In general, both micro and macro F1 are highly dependent on the threshold-
ing methodology. Rather than thresholding at 0.5, we rank the labels and pick the
top k based on a trained regression output layer. Can we do better than using a
MetaLabeler? To measure this, we look at the areas under PR/ROC curves. Regard-
ing micro and macro AUPRC, we improve on prior work by ≈ 2.5%. This suggests
that via better thresholding, the chances of improving both micro and macro F1 are
higher for Match-CNN compared to other methods. Finally, we are also interested in
metrics that evaluate how this model would be used in practice. We perform com-
parably with prior work on P@k. We show strong improvements in R@k with over
a 4% improvement in R@40 compared to grounded RNNs and over 1% improvement
when compared with Baumel et al. (2017). Our method also outperforms matching
networks across every evaluation measure.

We present MIMIC III results in Table 4.3. We reiterate that MIMIC III does not
have a standard train/test split. Hence we compare our model to our implementations

53

www.manaraa.com

Table 4.4: Ablation results for the MIMIC III dataset.

F1 P@k R@k AUC (PR)
Micro Macro 8 40 8 40 Micro Macro

Match-CNN 45.6 04.1 55.7 20.6 41.3 67.0 42.1 11.9
- Matching 42.9 03.4 53.4 19.6 39.5 63.6 37.6 09.5
- MetaLabler 39.1 02.6 55.7 20.6 41.3 67.0 42.1 11.9
- Multi-Head 45.0 03.4 54.8 20.2 40.3 65.6 41.7 11.3

of methods from prior efforts. For MIMIC III also we show improvements in multiple
evaluation metrics. Interestingly, our method performs much better than the standard
CNN on MIMIC III, compared to the relative performances of the two methods on
MIMIC II. Match-CNN improves on CNN in R@40 by almost 5% on the MIMIC III
dataset. The gain in R@40 is more than the 1% improvement found on MIMIC II.
We hypothesize that the improvements on MIMIC III are because the label imbalance
found in MIMIC III is higher than MIMIC II. Increased label imbalances mean more
labels occur less often. Therefore, we believe our model works better with less training
examples per label compared to the standard CNN model.

In Table 4.4 we analyze each component of our model using an ablation analysis on
the MIMIC III dataset. First, we find that removing the matching component signif-
icantly effects our performance by reducing micro AUPRC by almost 5%. Regarding
micro and macro F1, we also notice that the MetaLabeler heuristic substantially im-
proves on default thresholding (0.5). Finally, we see that the multi-head matching
component provides reasonable improvements to our model across multiple evalua-
tion measures. For example, P@8 and P@40 decrease by around 1% when we use
attention with a single input representation.

4.4 Conclusion

In this chapter, we introduced a semi-parametric multi-head matching network and
applied it to EMR coding datasets. We find that by combining the non-parametric
properties of matching networks with a traditional classification output layer, we
improve metrics for both frequent and infrequent labels in the dataset. However, this
model does not handle ICD-9 codes that never appeared in the dataset. Furthermore,
with the evaluation strategy used in this chapter, it is ambiguous how the model
performs on infrequent codes compared to codes that occur infrequently. We address
theses issues in Chapter 5.

54

www.manaraa.com

Chapter 5 Zero-shot and Few-shot Multi-label Learning

As discussed in Chapter 1, there are two major difficulties when developing machine
learning methods for large-scale multi-label text classification problems. First, the
documents may be long, sometimes containing more than a thousand words (Mullen-
bach et al., 2018). Finding the relevant information in a large document for a specific
label results in needle in a haystack situation. Second, data sparsity is a common
problem; as the total number of labels grows, a few labels may occur frequently,
but most labels will occur infrequently. Rubin et al. (2012) refer to datasets that
have long-tail frequency distributions as “power-law datasets”. Methods that predict
infrequent labels fall under the paradigm of few-shot classification which refers to
supervised methods in which only a few examples, typically between 1 and 5, are
available in the training dataset for each label. With predefined label spaces, some
labels may never appear in the training dataset. Zero-shot problems extend the idea
of few-shot classification by assuming no training data is available for the labels we
wish to predict at test time. In this chapter, we explore both of these issues, long doc-
uments and power-law datasets, with an emphasis on analyzing the few- and zero-shot
aspects of large-scale multi-label problems.

In Figure 5.1, we plot the label frequency distribution of diagnosis and procedure
labels for the entire MIMIC III (Johnson et al., 2016) dataset. A few labels occur more
than 10,000 times, around 5000 labels occur between 1 and 10 times, and of the 17,000
diagnosis and procedure labels, more than 50% never occur. There are a few reasons
a label may never occur in the training dataset. In healthcare, several disorders are
rare; therefore corresponding labels may not have been observed yet in a particular
clinic. Sometimes new labels may be introduced as the field evolves leading to an
emerging label problem. This is intuitive for applications such as hashtag prediction
on Twitter. For example, last year it would not have made sense to annotate tweets
with the hashtag #EMNLP2018. Yet, as this year’s conference approaches, labeling
tweets with the #EMNLP2018 will help users find relevant information.

How does the emerging code problem appear in health care? Do many new codes
get added to standardized medical coding terminologies? The World Health Organi-
zation (WHO) recently introduced the “gaming disorder” as a mental health disorder
in ICD-111. It was estimated that nearly 1 in 10 adolescents aged 8 to 18 suffer from

1http://www.who.int/features/qa/gaming-disorder/en/

55

http://www.who.int/features/qa/gaming-disorder/en/

www.manaraa.com

Figure 5.1: This plot shows the label frequency distribution of ICD-9 codes in MIMIC
III.

0
25

00
50

00
75

00
10

00
0

12
50

0

Sorted Label ID

1

10

100

1000

10000

La
be

lF
re

qu
en

cy

15
00

0

More than 50%
of all ICD-9 codes

never appear
in the MIMIC III

dataset

~5000 codes
 occur

≤10 times

gaming addiction (Gentile, 2009). With ICD-10, patients with gaming addictions
may be annotated with the label “Impulse-control disorder”. While some scholars
suggest that the estimates of video game addiction may be inflated (Wood, 2008), in
the event that hospitals switch to ICD-11, it is possible that many medical records
will begin to be annotated with the “gaming disorder” term. Switching to a new
vocabulary does not happen overnight. The word health organization released the
full ICD-10 terminology in 1994. The US Department of Health and Human Services
did not mandate the health industry to transition from ICD-9 to ICD-10 until 2015.
However, when we transition to a new vocabulary, and given the introduction of new
soon-to-be frequent codes, it is important to develop methods that can predict these
codes until enough training data is collected to take advantage of traditional super-
vised methods. This is evident given how many new codes were added to ICD-10
compared to ICD-9. Specifically, ICD-9 contains just over 14 thousand diagnosis
codes compared to the 68 thousand codes in ICD-10. Furthermore, the number of
procedure codes increased nearly 19 times from almost 4 thousand codes in ICD-9 to
over 70 thousand in ICD-10.

Infrequent labels may not contribute heavily to the overall accuracy of a multi-
label model but in some cases correct prediction of such labels is crucial but not
straightforward. For example, in assigning diagnosis labels to EMRs, it is important
that trained human coders are both accurate and thorough. Errors may cause unfair
financial burden on the patient. Coders may have an easier time assigning frequent
labels to EMRs because they are encountered more often. Also, frequent labels are
generally easier to predict using machine-learning based methods. However, infre-

56

www.manaraa.com

quent or obscure labels will be easily confused or missed causing billing mistakes
and/or causing the coders to spend more time annotating each record. Thus, we
believe methods that handle infrequent and unseen labels in the multi-label setting
are important.

Current evaluation methods for large-scale multi-label classification mostly ignore
infrequent and unseen labels. Popular evaluation measures focus on metrics such
as micro-F1, recall at k (R@k), precision at k (P@k), and macro-F1. As it is well-
known that micro-F1 gives more weight to frequent labels, papers on this topic also
report macro-F1, the average of label-wise F1 scores, which equally weights all labels.
Unfortunately, macro-F1 scores are generally low and the corresponding performance
differences between methods are small. Moreover, it is possible to improve macro-F1
by only improving a model’s performance on frequent labels, further confounding its
interpretation. Hence we posit that macro-F1 is not enough to compare large-scale
multi-label learning methods on infrequent labels and it does not directly evaluate
zero-shot labels. Here, we take a step back and ask: can the model predict the
correct few-shot (zero-shot) labels from the set of all few-shot (zero-shot) labels? To
address this, we test our approach by adapting the generalized zero-shot classification
evaluation methodology by Xian et al. (2017) to the multi-label setting.

In this chapter, we propose and evaluate a neural architecture suitable for handling
few- and zero-shot labels in the multi-label setting where the output label space
satisfies two constraints: (1). the labels are connected forming a DAG and (2). each
label has a brief natural language descriptor. These assumptions hold in several
multi-label scenarios including assigning diagnoses/procedures to EMRs and indexing
biomedical articles with medical subject headings. Taking advantage of this prior
knowledge on labels is vital for zero-shot prediction. Specifically, using the EMR
coding use-case, we make the following contributions:

1. We overcome issues arising from processing long documents by introducing a
new neural architecture that expands on recent attention-based CNNs (ACNN (Mul-
lenbach et al., 2018)). Our model learns to predict few- and zero-shot labels
by matching discharge summaries in EMRs to feature vectors for each label
obtained by exploiting structured label spaces with graph CNNs (GCNN (Kipf
and Welling, 2017)).

2. We provide a fine-grained evaluation of state-of-the-art EMR coding methods
for frequent, few-shot, and zero-shot labels. By evaluating power-law datasets
using an extended generalized zero-shot methodology that also includes few-

57

www.manaraa.com

shot labels, we present a nuanced analysis of model performance on infrequent
ICD-9-CM codes.

5.1 Related Work

In this section, we present related-work about three areas of research relevant to this
chapter: Few- and zero-shot learning, structured label correlations for multi-label
classification, and GCNNs.

5.1.1 Few-Shot and Zero-Shot Learning

While neural networks are generally considered to need large datasets, they have
been shown to work well on few-shot classification tasks. To handle infrequent labels,
most NN methods use a k-NN-like approach. Siamese NNs (Koch et al., 2015) learn a
nonlinear distance metric using a pairwise loss function. Matching networks (Vinyals
et al., 2016) introduce an instance-level attention method to find relevant neighbors.
Prototypical Networks (Snell et al., 2017b) average all instances in each class to form
“prototype label vectors” and train using a traditional cross-entropy loss.

Zero-shot learning has not been widely explored in the large-scale multi-label
classification scenario. Like neural few-shot methods, neural zero-shot methods use a
matching framework. Instead of matching input instances with other instances, they
are matched to predefined label vectors. For example, the Attributes and Animals
Dataset (Xian et al., 2017) contains images of animals and the label vectors consist of
features describing the types of animals (e.g., stripes: yes). When feature vectors for
labels are not available, the average of the pretrained word embeddings of the class
names have been used. The attribute label embedding method (Akata et al., 2016)
uses a pairwise ranking loss to match zero-shot label vectors to instances. (Romera-
Paredes and Torr, 2015) introduced the “embarrassingly simple zero-shot learning”
(ESZSL) method which is trained using a mean squared error loss. A few zero-shot
methods do not translate well to multi-label problems. CONSE (Mikolov et al.,
2013a) averages the embeddings for the top predicted supervised label vectors to
match to zero-shot label vectors. CONSE assumes that both supervised and zero-
shot labels cannot be assigned to the same instance. In this chapter, we expand on
the generalized zero-shot evaluation methodology introduced by (Xian et al., 2017)
to large-scale multi-label classification. Finally, it is important to note that zero-shot
classification has been previously studied in the multi-label setting (Mensink et al.,

58

www.manaraa.com

2014). However, they focus on image classification and their datasets only contain
around 300 labels.

5.1.2 Structured Label Correlations for Multi-label Classification

Ontological resources that consist of hyperemic (“is a”) and meronymic (“part of”)
relations between labels are common in many domains including e-commerce and
biomedicine. Such hierarchical knowledge sources, when available, are commonly
exploited to improve multi-label predictions. Hierarchical binary relevance (HBR)
constructs a dataset for each node in the hierarchy consisting of instances belonging
to its parent (Tsoumakas et al., 2010). Predictions can be made using a top-down
approach where an instance won’t proceed to the inner nodes of a subtree if its
root node does not positively classify the instance. This suggests that for large
label spaces it is not necessary to run every classifier for each label. There are well
known weaknesses to such an approach the most significant one being the so called
“blocking problem” where recall is adversely affected by higher nodes ruling out correct
downstream predictions.

Recent work has transformed the hierarchical classification problem into an opti-
mal subgraph search problem (Bi and Kwok, 2011). In the BR framework, the key
idea is to independently pick the top k labels based on each classifier score. Instead,
the optimal subgraph respects specific properties that ensure the consistency of the
directed asyclic graph (DAG). This is different from HBR which builds a new dataset
for each node. Label co-occurrence as well as semantic label hierarchy have been
formulated via label ranking optimization problems (Wu et al., 2015) by encouraging
parent labels to rank higher than their children.

5.1.3 Graph Convolutional Neural Networks

GCNNs generalize CNNs beyond 2d and 1d spaces. Defferrard et al. (2016) devel-
oped spectral methods to perform efficient graph convolutions. Kipf and Welling
(2017) assume a graph structure is known over input instances and apply GCNNs
for semi-supervised learning. GCNNs are applied to relational data (e.g., link pre-
diction) by Schlichtkrull et al. (2018). GCNNs have also had success in many NLP
applications including, but not limited to, semantic role labeling (Marcheggiani and
Titov, 2017), dependency parsing (Strubell and McCallum, 2017), and machine trans-
lation (Bastings et al., 2017).

There are three GCNN papers that share similarities with our work.

59

www.manaraa.com

GCNN GCNN

John
has
high

blood
pressure

and
is

overweight

• 690-698.99 - OTHER INFLAMMATORY CONDIT...
 • 690 - Erythematosquamous dermatosis
 • 690.1 - Seborrheic dermatitis
 • 690.10 - Seborrheic dermatitis, unspecified
 • 690.11 - Seborrhea capitis

All ICD-9 Descriptors

ICD-9
Predictions

Label-wise
Attention

Convolution
Layer

Output
Layer

2-Layer GCNN
⎧
⎨
⎩

vi
⎧
⎨
⎩v i

2

⎧⎨⎩ D
⎧
⎨
⎩ci

Figure 5.2: Overview of our architecture

1. Peng et al. (2018) use a GCNN on a word co-occurrence graph for large-scale
text classification where the GCNN operates on documents/words, while our
GCNN operates on the labels.

2. Chen et al. (2017) use GCNNs on structured label spaces. However, their ex-
periments focus on smaller label spaces and do not handle/assess zero-shot and
few-shot labels. Also, their experiments for text classification do not incor-
porate attention and simply use an average of word vectors to represent each
document.

3. Wang et al. (2018) propose a zero-shot GCNN image classification method for
structured multi-class problems. We believe their method may transfer to the
multi-label text classification setting but exact modifications to affect that are
not clear (i.e., their semi-supervised approach may not be directly applicable).
Likewise, porting to text is nontrivial for long documents.

5.2 Method

Figure 5.2 shows the overall schematic of our architecture. Intuitively, we incorporate
four main components. First, we assume we have the full English descriptor/gloss
for each label we want to predict. We form a vector representation for each label
by averaging the word embeddings for each word in its descriptor. Second, the label
vectors formed from the descriptor are used as attention vectors (label-wise attention)
to find the most informative ngrams in the document for each label. For each label,

60

www.manaraa.com

this will produce a separate vector representation of the input document. Third,
the label vectors are passed through a two layer GCNN to incorporate hierarchical
information about the label space. Finally, the vectors returned from the GCNN are
matched to the document vectors to generate predictions.

5.2.1 Convolutional Neural Network

Contrary to Chapters 3 and 4, instead of using a max-over-time pooling layer, we learn
to find relevant ngrams in a document for each label via label-wise attention (Mullen-
bach et al., 2018). The CNN will return a document feature matrix D ∈ R(n−s+1)×u

where each column of D is a feature map, u is the total number of convolution filters,
n is the number of words in the document, and s is the width of convolution filters.

5.2.2 Label Vectors

To be able to predict labels that were not in the training dataset, we avoid learning
label specific parameters. We use the label descriptors to generate a feature vector for
each label. First, to preprocess each descriptor, we lowercase all words and remove
stop-words. Next, each label vector is formed by averaging the remaining words in
the descriptor

vi =
1

|N |
∑
j∈N

wj, i = 1, . . . , L, (5.1)

where vi ∈ Rd, L is the number of labels, and N is the index set of the words in the
descriptor. Prior zero-shot work has focused on projecting input instances into the
same semantic space as the label vectors (Sandouk and Chen, 2016). For zero-shot
image classification, this is a non-trivial task. Because we work with textual data,
we simply share the word embeddings between the convolutional layer and the label
vector creation step to form vi.

5.2.3 Label-Wise Attention

Similar to the work by Mullenbach et al. (2018), we employ label-wise attention to
avoid the needle in the haystack situation encountered with long documents. But
here we also need to find relevant information for zero-shot classes. So we use the
label vectors vi rather than learning label specific attention parameters. First, we
pass the document feature matrix D through a simple feed-forward neural network

D2 = tanh(DWb + bb)

61

www.manaraa.com

where Wb ∈ Ru×d and bb ∈ Rd. This mapping is important because the dimensional-
ity of the ngram vectors (rows) in D depends on u, the number of scores we generate
for each ngram. Given D2, we generate the label-wise attention vector

ai = softmax(D2 vi), i = 1, . . . , L, (5.2)

where ai ∈ Rn−s+1 measures how informative each ngram is for the i-th label. Finally,
we use D, and generate L label-specific document vector representations

ci = aT
i D, i = 1, . . . , L,

such that ci ∈ Ru. Intuitively, ci is the weighted average of the rows in D forming a
vector representation of the document for the i-th label.

5.2.4 GCNN Output Layer

Traditionally, the output layer of a CNN would learn label specific parameters opti-
mized via a cross-entropy loss. Instead, our method attempts to match documents
to their corresponding label vectors. In essence, this becomes a retrieval problem.
Before using each document representation ci to score its corresponding label, we
take advantage of the structured knowledge we have over our label space using a
2-layer GCNN. For both the MIMIC II and MIMIC III datasets, this information is
hierarchical. A snippet of the hierarchy can be found in Figure 5.2.

Starting with the label vectors vi, we combine the label vectors of the children
and parents for the i-th label to form

v1
i = f(W1vi +

∑
j∈Np

W1
pvj

|Np|
+

∑
j∈Nc

W1
cvj

|Nc|
+ b1

g)

where W1 ∈ Rq×d, W1
p ∈ Rq×d, W1

c ∈ Rq×d, b1
g ∈ Rq, f is the rectified linear

unit (Nair and Hinton, 2010) function, and Nc (Np) is the index set of the i-th label’s
children (parents). We use different parameters to distinguish each edge type. In
this chapter, given we only deal with hierarchies, the edge types include edges from
parents, from children, and self edges. This can be adapted to arbitrary DAGs, where
parent edges represent all incoming edges and the child edges represent all outgoing
edges for each node.

62

www.manaraa.com

The second layer follows the same formulation as the first layer with

v2
i = f(W2v1

i +
∑
j∈Np

W2
pv

1
j

|Np|
+

∑
j∈Nc

W2
cv

1
j

|Nc|
+ b2

g)

where W2 ∈ Rq×q, W2
p ∈ Rq×q, W2

c ∈ Rq×q, and b2
g ∈ Rq. Next, we concatenate both

the averaged description vector (from equation (5.1)) with the GCNN label vector

v3
i = vi || v2

i ,

where v3
i ∈ Rd+q. Now, to compare the final label vector v3

i with its document vector
ci, we transform the document vector into

ei = ReLU(Woci + bo), i = 1, . . . , L,

where Wo ∈ R(q+d)×u and bo ∈ Rq+d. This transformation is required to match the
dimension to that of v3

i . Finally, the prediction for each label i is generated via

ŷi = sigmoid(eTi v3
i), i = 1, . . . , L.

During experiments, we found that using either the output layer GCNN or a separate
GCNN for the attention vectors (equation (5.2)) did not result in an improvement
and severely slowed convergence.

5.2.5 Training

Following the same strategy as Chapters 3 and 4, we train our model using a multi-
label binary cross-entropy loss (Nam et al., 2014a)

L =
L∑
i=1

[
− yi log(ŷi)− (1− yi) log(1− ŷi)

]
,

where yi ∈ {0, 1} is the ground truth for the i-th label and ŷi is our sigmoid score for
the i-th label.

5.3 Experiments

In this chapter, we use the same two medical datasets for evaluation purposes from
Chapter 4: MIMIC II (Jouhet et al., 2012) and MIMIC III (Johnson et al., 2016).

63

www.manaraa.com

Table 5.1: MIMIC II and MIMIC III dataset statistics for few- and zero-shot learning.

Number of Labels
Dataset Frequent (S) Few-Shot (F) Zero-Shot (Z)

MIMIC II 3228 3459 355
MIMIC III 4403 4349 178

Both datasets contain discharge summaries annotated with a set of ICD-9 diagno-
sis and procedure labels. Furthermore, we use the same train/test splits as Chap-
ter 4. Discharge summaries are textual documents consisting of, but not limited to,
physician descriptions of procedures performed, diagnoses made, the patient’s med-
ical history, and discharge instructions. We use the label descriptors provided by
the world health organization (WHO) to generate label vectors, whose average de-
scriptor length is seven words. Following a generalized zero-shot learning evaluation
methodology (Xian et al., 2017), we split the ICD-9 labels into three groups based
on frequencies in the training dataset: The frequent group S that contains all labels
that occur > 5 times, the few-shot group F that contains labels that occur between
1 and 5 times, and the zero-shot group Z of labels that never occurred. The groups
are only used for evaluation. That is, during training, systems are optimized over all
labels simultaneously. Also, instances that do not contain few- or zero-shot classes are
removed from their respective groups during evaluation. This grouping is important
to assess how each model performs across labels grouped by label frequency. Our
evaluation methodology differs from that of (Xian et al., 2017) in two ways. First,
because each instance is labeled with multiple labels, the same instance can appear
in all groups — S, F, and Z. Second, instead of top-1 accuracy or HIT@k evaluation
measures, we focus on R@k to handle multiple labels. At a high level, we want to
examine whether a model can distinguish the correct few-shot (zero-shot) labels from
the set of all few-shot (zero-shot) labels. Therefore, the R@k measures in Tables 5.2
and 5.3, and Figure 5.3 are computed relative to each group.

5.3.1 Datasets

We use the same datasets as Chapter 4. The number of labels in the frequent, few-
and zero-shot groups in the MIMIC II and III datasets are reported in Table 5.1.
For reproducibility purposes, we use the same training/test splits of the MIMIC II
as Perotte et al. (2013). Following the procedures in Perotte et al. (2013), Vani et
al. (2017), and Chapter 4, for each diagnosis and procedure label assigned to each

64

www.manaraa.com

medical report, we add its parents using the ICD-9 hierarchy. Each report in MIMIC
II is annotated with nearly 37 labels on average using hierarchical label expansion.

MIMIC III does not contain a standardized training/test split. Therefore, we
create our own split that ensures the same patient does not appear in both the training
and test datasets. Unlike the MIMIC II dataset, we do not augment the labels using
the ICD-9 hierarchy. Also, contrary to Chapter 4, we predict both diagnosis and
procedure codes. The ICD-9 hierarchy has three main levels. For MIMIC III, level
0 labels make up about 5% of all occurrences, level 1 labels make up about 62%,
and level 2 (leaf level) labels make up about 33%. Also, each MIMIC III instance
contains16 ICD-9 labels on average.

5.3.2 Implementation Details.

For the CNN component of our model, we use 300 convolution filters with a filter size
of 10. We use 300 dimensional word embeddings pretrained on PubMed biomedical
article titles and abstracts. To avoid overfitting, we use dropout directly after the
embedding layer with a rate of 0.2. For training we use the ADAM (Kingma and Ba,
2014) optimizer with a minibatch size of 8 and a learning rate of 0.001. q, the GCNN
hidden layer size, is set to 300.

5.3.3 Evaluation Measures

Thresholding has a large influence on traditional multi-label evaluation measures
such as micro-F1 and macro-F1 (Tang et al., 2009). Hence, we report both recall at k
(R@k) and precision at k (P@k) which do not require a specific threshold. R@k and
P@k is defined in detail in Chapter 2, by Equation 2.5 and Equation 2.4 respectively.
R@k is preferred for few- and zero-shot labels, because P@k quickly goes to zero
as k increases and gets bigger than the number of group specific labels assigned to
each instance. Furthermore, for medical coding, these models are typically used as
a recommendation engine to help coders. Unless a label appears at the top of the
ranking, the annotator will not see it. Thus, ranking metrics better measure the
usefulness of our systems.

5.3.4 Baseline Methods

For the frequent and few-shot labels we compare to state-of-the-art methods on the
MIMIC II and MIMIC III datasets including ACNN (Mullenbach et al., 2018) and

65

www.manaraa.com

a CNN method introduced in (Baumel et al., 2017). We also compare with the L1
regularized logistic regression model used in (Vani et al., 2017).

For zero-shot learning, we compare our results with ESZSL (Romera-Paredes and
Torr, 2015). To use ESZSL, we must specify feature vectors for each label. For zero-
shot methods, the label vectors used are crucial regardless of the learning method
used. Therefore, we evaluate ESZSL with three different sets of label vectors. We
average 200 dimensional ICD-9 descriptor word embeddings generated by (Pyysalo et
al., 2013)2 which are pretrained on PubMed, Wikipedia, and PubMed Central (ESZSL
+ W2V). We lowercased descriptors and removed stop-words. We also compare
with label vectors derived from our own 300 dimensional embeddings (ESZSL +
W2V 2) pretrained on PubMed indexed titles and abstracts. We also generate label
vectors using the ICD-9 hierarchy. Specifically, let Y ∈ RN×L be the document
label matrix where N is the total number of documents. We factorize Y into two
matrices U ∈ RN×300 and V ∈ R300×L using graph regularized alternating least
squares (GRALS) (Rao et al., 2015). Finally, we also report a baseline using a
random ordering on labels, which is important for zero-shot labels — because the
total number of such labels is small, the chance that the correct label is in the top
k is higher compared to few-shot and frequent labels. This method is explained in
detail in Appendix A.

We compare two variants of our method: zero-shot attentive GCNN (ZAGCNN),
which is the full method described in Section 5.2 and a simpler variant without the
GCNN layers, zero-shot attentive CNN (ZACNN)3.

5.3.5 Results

Table 5.2 shows the results for MIMIC II. Because the label set for each medical record
is augmented using the ICD-9 hierarchy, we expect methods that use the hierarchy
to have an advantage. ACNN performs best on frequent labels. For few-shot labels,
ZAGCNN outperforms ACNN by over 10% in R@10 and by 8% in R@5; compared
to these R@k gains for few-shot labels, our loss on frequent labels is minimal (< 1%).
We find that the word embedding derived label vectors work best for ESZSL on zero-
shot labels. However, this setup is outperformed by GRALS derived label vectors on
the frequent and few-shot labels. On zero-shot labels, ZAGCNN outperforms the best
ESZSL variant by over 16% for both R@5 and R@10. Also, we find that the GCNN

2http://bio.nlplab.org/
3We name our methods with the “zero-shot” prefix because they are primarily designed for such

scenarios, although as we show later that these methods are effective for both few-shot and frequent
labels

66

http://bio.nlplab.org/

www.manaraa.com

Table 5.2: MIMIC II results across frequent (S), few-shot (F), and zero-shot (Z)
groups. We mark prior methods for MIMIC datasets that we implemented with a *.

S F Z Harmonic Average
R@5 R@10 R@5 R@10 R@5 R@10 R@5 R@10

Random 00.0 00.0 00.0 00.0 01.1 03.2 – –

Logistic (Vani et al., 2017) * 13.7 24.7 00.1 00.3 – – – –
CNN (Baumel et al., 2017) * 13.8 25.0 05.0 08.2 – – – –
ACNN (Mullenbach et al., 2018) * 13.8 25.5 04.6 08.1 – – – –

ESZSL + W2V 07.4 11.9 00.8 01.7 08.0 17.2 02.0 04.1
ESZSL + W2V 2 05.0 08.6 02.5 04.4 10.3 18.9 04.3 07.6
ESZSL + GRALS 13.5 23.8 08.1 12.3 08.5 13.6 09.5 15.2

ZACNN 13.5 24.5 10.3 14.9 14.7 22.1 12.8 20.5
ZAGCNN 13.5 24.7 13.0 18.5 26.9 36.2 16.0 24.6

Table 5.3: MIMIC III results across frequent (S), few-shot (F), and zero-shot (Z)
groups. We mark prior methods for MIMIC datasets that we implemented with a *.

S F Z Harmonic Average
R@5 R@10 R@5 R@10 R@5 R@10 R@5 R@10

Random 00.0 00.0 00.0 00.0 03.8 05.2 – –

Logistic (Vani et al., 2017) * 27.3 42.7 01.4 01.4 – – – –
CNN (Baumel et al., 2017) * 26.9 41.3 05.8 08.5 – – – –
ACNN (Mullenbach et al., 2018) * 28.8 45.8 13.0 16.8 – – – –

ESZSL + W2V 13.5 19.1 03.1 05.1 15.7 25.7 06.5 10.5
ESZSL + W2V 2 12.7 18.9 03.1 04.8 14.8 30.5 06.3 10.2
ESZSL + GRALS 25.6 39.3 03.3 06.0 07.6 13.8 06.4 11.4

ZACNN 27.8 43.5 15.2 19.5 36.4 44.2 23.2 31.0
ZAGCNN 28.3 44.5 16.6 21.6 42.8 49.5 25.2 33.7

layers help both few- and zero-shot labels. Finally, similar to the setup in (Xian et al.,
2017), we also compute the harmonic average across all R@5 and all R@10 scores.
The metric is only computed for methods that can predict zero-shot classes. We find
that ZAGCNN outperforms ZACNN by 4% for R@10.

We report the MIMIC III results in Table 5.3. Unlike for MIMIC II, the label sets
were not expanded using the ICD-9 hierarchy. Yet, we find substantial improvements
on both few- and zero-shot labels using a GCNN. ZAGCNN outperforms ACNN by
almost 5% and ZACNN by 1% in R@10 on few-shot classes. However, ACNN still
outperforms all other methods on frequent labels, but by only 0.3% when compared
with ZAGCNN. For zero-shot labels, ZAGCNN outperforms ZACNN by over 5% and
outperforms the best ESZSL method by nearly 20% in R@10. We find that ZACNN

67

www.manaraa.com

Table 5.4: P@k, R@k, and macro-F1 results over all labels (the union of S, F, and
Z).

P@10 R@10 Macro-F1

CNN 56.2 40.7 02.8
ACNN 62.4 45.2 06.8
ZACNN 57.7 42.9 03.7
ZAGCNN 58.7 43.9 03.8

Figure 5.3: This graph plots the MIMIC III R@k for few-shot (F) labels at different
k values.

0 20 40 60 80 100
k

0.0

0.1

0.2

0.3

0.4

0.5

R
ec

al
l a

t k

ACNN
CNN

ZACNN
ZAGCNN

slightly underperforms ZAGCNN on frequent labels with more prominent differences
showing up for infrequent labels.

In Table 5.4 we compare the P@10, R@10, and macro-F1 measures across all three
groups (the union of S, F , and Z) on the MIMIC III dataset. We emphasize that the
evaluation metrics are calculated over all labels and are not averages of the metrics
computed independently for each group. We find that R@10 is nearly equivalent to
the R@10 on the frequent group in Table 5.3. Furthermore, we find that ACNN
outperforms ZAGCNN in P@10 by almost 4%. To compare all methods with respect
to macro-F1, we simply threshold each label at 0.5. Both R@k and P@k give more
weight to frequent labels, thus it is expected that ACNN outperforms ZAGCNN for
frequent labels. However, we also find that ACNN outperforms our methods with
respect to Macro-F1.

Given macro-F1 equally weights all labels, does the higher macro score mean

68

www.manaraa.com

ACNN performs better across infrequent labels? In Figure 5.3, we plot the MIMIC
III R@k for the neural methods with k ranging from 1 to 100. We find as k increases,
the differences between ZAGCNN and ACNN become more evident. Given Figure 5.3
and the scores in Table 5.3, it is clear that ACNN does not perform better than
ZAGCNN with respect to few- and zero-shot labels. The improvement in macro-F1
for ACNN is because it performs better on frequent labels. In general, infrequent
labels will have scores much less than 0.5. If we rank all labels (S ∪ F ∪ Z), we find
that few-shot labels only occur among the top 16 ranked labels (average number of
labels for MIMIC III) for 6% of the test documents that contain them. This result
suggests that many frequent irrelevant labels have higher scores than the correct
few-shot label.

Why do the rankings among few- and zero-shot labels matter if they are rarely
ranked above irrelevant frequent labels? If we can predict which instances contain
infrequent labels (novelty detection), then we can help human coders by providing
them with multiple recommendation lists — a list of frequent labels and a list of
infrequent/zero-shot labels. Also, while we would ideally want a single method that
performs best for both frequent and infrequent labels, currently we find that there
is a trade-off between them. Hence it may be reasonable to use different methods in
combination depending on label frequency.

5.4 Conclusion

In this chapter, we performed a fine-grained evaluation of few- and zero-shot label
learning in the large-scale multi-label setting. We also introduced a neural architec-
ture that incorporates label descriptors and the hierarchical structure of the label
spaces for few- and zero-shot prediction. For these infrequent labels, previous evalu-
ation methodologies do not provide a clear picture about what works. By evaluating
power-law datasets using a generalized zero-shot learning methodology, we provide
a staring point toward a better understanding. Our proposed architecture also pro-
vides large improvements on infrequent labels over state-of-the-art automatic medical
coding methods.

69

www.manaraa.com

Chapter 6 Conclusion and Future Work

Coding EMRs with diagnosis and procedure codes is an indispensable task for billing,
secondary data analyses, and monitoring health trends. Both speed and accuracy of
coding are critical. While coding errors could lead to more patient-side financial
burden and misinterpretation of a patients well-being, timely coding is also needed
to avoid backlogs and additional costs for the healthcare facility. In this thesis, we
created several neural network-based methods that overcome various issues encoun-
tered when developing automated medical coding systems. In doing so, we provide
several contributions to the field with valuable insights for future work. The rest of
this chapter discusses our contributions, limitations, and directions for future work
in more detail.

6.1 Summary of Contributions

In this dissertation, we presented instantiations of neural networks for coding EMRs
with diagnosis and procedure codes. This research has resulted in several important
contributions. We list the main contributions below:

Transfer learning for medical coding. In Chapter 3, we performed a detailed
analysis of various transfer learning methods to understand what performs best on a
real-world EMR dataset. Furthermore, we introduced a simple, yet effective, transfer
learning method which overcomes issues of catastrophic forgetting. We show that
transfer learning can provide significant improvements to CNNs, especially when using
biomedical research articles indexed by the PubMed search engine as supplementary
training data.

Matching networks for EMR coding. Traditional CNNs are limited in terms of
how well they can perform on power-law datasets, such as the distribution shown
in Figure 1.2. In Chapter 4, we introduced a novel extension of matching networks
which combine the non-parametric properties of kNN with traditional parametric
CNNs. We find that by incorporating the features of similar instances, where the
similarity is learned by the neural network, then we can improve over prior state-of-
the-art medical coding methods on a variety of evaluation metrics.

Extracting unseen medical codes from EMRs. The shortcoming of many meth-
ods for automated medical coding is their inability to predict codes that never oc-

70

www.manaraa.com

curred in the training dataset. Yet, because many diagnosis and procedure codes
may simply be rare, many hospitals may not have encountered them yet. Therefore,
many EMR datasets will be missing a lot of codes. However, when a new code is
encountered, we still want our models to have the ability to predict them. In Chap-
ter 5, we introduced a model which takes advantage of the structured nature of ICD
codes as well as code descriptors to predict unseen codes. Furthermore, we show that
if we use a generalized zero-shot learning evaluation methodology, then we can have
a clear understanding of how different methods perform on infrequent (few-shot) and
unseen (zero-shot) diagnosis and procedure codes.

6.2 Limitations and Directions for Future Work

There are limitations with the datasets used to evaluate our various methods. Like-
wise, there are limitations of the methods presented in this manuscript. Both the
MIMIC datsets and the UKY dataset are annotated with procedure and/or diagno-
sis codes from the ICD-9-CM vocabulary. However, in 2015, a federal mandate was
issued that requires healthcare facilities in the United States to use ICD-10 instead
of ICD-9. Because of this recent change, ICD-10 training data is limited. There-
fore, we use ICD-9 datasets for evaluation. Issues of data sparsity are exacerbated
in ICD-10. ICD-9-CM contains 3824 procedure codes and 14025 diagnosis codes.
ICD-10-CM contains 71924 procedure codes and 69823 diagnosis codes. So, for a
method to extend to ICD-10 codes it must overcome two obstacles. First, with over
140 thousand codes, methods which predict ICD-10-CM codes must scale to such a
large label space. Second, with so many labels, it is possible that a greater propor-
tion of codes will be infrequent or not occur at all in many datasets. If an unseen
code is not close to seen code in the ICD-10 hierarchy, then our method proposed in
Chapter 5 may not be able to predict it. Our semi-parametric matching network also
has its own limitations. Specifically, we proposed a simple method to sample support
set instances. The method involved repeated distance calculations on a large num-
ber training documents. However, as the training set grows, repeatedly performing
brute-force distance calculations will become inefficient.

We believe there are three important avenues for future work.

1. For medical coding, a wealth of unstructured domain expertise is available in
biomedical research articles indexed by PubMed. These articles are annotated
with medical subject headings (MeSH terms), which are organized in a hier-
archy. Relationships between MeSH terms and ICD-9 codes are available in

71

www.manaraa.com

Figure 6.1: Schematic for taking advantage of all the available structured and un-
structured information available in PubMed and UMLS.

ICD-9 Prediction

PubMed

ICD-9 Hierarchy MeSH Hierarchy
UMLS

Relationships

Transfer Learning
and

Mult-task Learning

MeSH Prediction
EMR

Unified Medical Language System (UMLS (Bodenreider, 2004)). In Chapter 3,
we used transfer learning to try to take advantage of this information. However,
if we can take advantage of all this structured and unstructured information via
methods such as transfer multi-task learning, then we may be able to predict
infrequent labels better. We provide a basic schematic of this idea in Figure 6.1.
Furthermore, we only used a relatively small subset of PubMed articles in Chap-
ter 3, if we can develop more efficient training methods, then we can easily take
advantage of the 27 million available articles.

2. To predict exact code sets, in Chapters 3 and 4 we rely on simple thresholding
methods or a MetaLabeler (Tang et al., 2009). However, as discussed in Chap-
ter 5, these simple thresholding strategies are not sufficient for infrequent and
zero-shot codes. A promising area of research is to develop more sophisticated
thresholding strategies. Similarly, for our zero-shot medical coding method to
be useful for human coders, it is important to develop an accurate novelty de-
tector. We plan to study methods for determining if an instance contains an
infrequent label, and if it does, we want to determine how many infrequent
labels it should be annotated with. In essence, this is an extension of the Met-
aLabeler methodology. Novelty detection is also similar to open classification

72

www.manaraa.com

methods (Shu et al., 2017). Open classification involves dynamic open environ-
ments where some new/test documents may not belong to any of the training
classes. Open classification methods generally train a extra class which predicts
if an instance is not annotated with any of the training classes or not. If we
can predict if an instance contains infrequent labels, then we can recommended
few- and zero-shot labels to human annotators only when necessary. Likewise,
if we can develop better few- and zero-shot methods, then we can use different
thresholds for each group in combination with the novelty detector.

3. In this dissertation, we have focused on extracting diagnosis and procedure
codes from textual notes in EMRs. The process of coding EMRs with diagnosis
and procedure codes can be termed as multi-label classification. In our future
work, we can apply our methods to other large multi-label problems besides
EMR coding. Other large multi-label problems include classifying Wikipedia
articles (Partalas et al., 2015), patent classification (Tran and Kavuluru, 2017),
and annotating research articles with MeSH terms (Rios and Kavuluru, 2015a).
For example, the matching network described in Chapter 4 and the zero(few)-
shot method in Chapter 5 can be used for MeSH classification given PubMed
is a power-law dataset where many labels occur infrequently.

Copyright c⃝ Anthony Rios, 2018.

73

www.manaraa.com

Appendix A Graph Regularized Concept Vectors

Zero-shot learning algorithms require a feature vector for each label that we expect
to predict at test time. For some applications, attributes are available for each label
such that a feature vector can be formed (Xian et al., 2017). When such information
is unavailable, then pretrained word vectors of the label names have been used (Xian
et al., 2017). In this chapter, we describe GRALS (Rao et al., 2015), a method which
we use in Chapter 5 to create label vectors using pairwise relationships between labels.
Specifically, we make use the the hierarchical structure of the ICD-9-CM code set. A
snippet of the hierarchy is shown in Chapter 5, Figure 5.2.

Model Details In Figure A.1, we display a high-level overview of the GRALS
matrix factorization method. Intuitively, we factorize the document label matrix into
to smaller matricies: a document matrix, and a label matrix. The label matrix is
regularized such that labels that are connected in the hierarchy will have similar vector
representations. Unlike Rao et al. (2015), we assume all elements of the document
label matrix are observed.

Traditional factorization methods decompose Y into two matrices, U ∈ RN×k and
V ∈ RL×k by solvoing the following optimization problem

minimize
U,V

∥Y −UVT∥2F + λ(∥U∥2F + ∥V∥2F) (A.1)

where λ controls the amount of regularization for both U and V. This factorization
has typically been used to reduce the label space such that methods can scale to ex-
treme labels spaces. The main assumption is that Y can be sufficiently approximated
by a low-rank matrix. Several solutions for factoring the document label matrix have
been explored by many researchers (Hsu et al., 2009; Yu et al., 2014; Xu et al., 2016).
Unfortunately, the low rank approximation of Y does not hold in the presence of
tail labels – infrequently occuring labels. Additionally, if a label never occurs in the
training dataset (i.e., the column in Y for that label is all zeros), then its label vector
will be random.

We assume there exists a graph G = (V,E) that encodes structured relationships
between labels. If we assume the matrix V encodes latent label representations, we
can assume that labels connected in G will have similar label representations. Even
if a ICD-9 code occurs infrequently, if either its parent or child occurs in the training

74

www.manaraa.com

Figure A.1: Visualization of the GRALS (Rao et al., 2015) matrix factorization
method.

{
Graph Regularization

{Document
Vectors

{
Document/Label

Matrix

{Label Vectors

U
V

dataset, then a label vector for the infrequently occur label can still be reasonably
approximated. Therefore, we use the following graph regularizer∑

{i,j}∈E

Ei,j∥vi − vj∥2 = tr(VTLGV), (A.2)

where Ei,j is the edge weight between nodes (i, j) and LG = Q− E is the Laplacian
matrix where Q is the degree matrix of G (Belkin and Niyogi, 2003).

We can combine Equations A.1 and A.2 into the final optimization problem

minimize
U,V

∥Y −UVT∥2F + λ1∥U∥2F + λ2tr(VLGV
T). (A.3)

To simplify the optimization procedure, and following the work proposed by Rao et
al., 2015, we ignore the L2 regularization term on V.

To optimize Equation A.3 we use an alternating minimization technique. First,
fixing V and optimizing U , then fixing U and optimizing V .

75

www.manaraa.com

Optimizing U. To optimize U, we first fix V which results in the following opti-
mization problem

minimize
U

∥Y −UVT∥2F + λ1∥U∥2F (A.4)

which simplifies to standard ridge regression problem. We solve Equation A.4 ana-
lytically as

U = YV(VTV + λ1I)
−1

where −1 represents the inverse of a matrix, and I is the identity matrix.

Optimizing V. Optimizing V is equivalent to

minimize
V

∥Y −UVT∥2F + λ2tr(VLGV
T). (A.5)

Taking the gradient of f(V) with respect to V and setting it to 0 gives us

VUTU+ λ2LGV = YTU. (A.6)

based on the connections between Frobenius norm and trace functions and their
derivatives1. Equation A.6 can be solved for V analytically when U is fixed. However,
it would involve inverting an Lk × Lk matrix which is computationally expensive,
especially as the number of codes increases. Therefore, we follow Rao et al. (2015)
and use the conjugate gradient (CG) method to find a solution to Equation A.6. In
order to perform the CG method efficiently, we need to define an efficient method of
calculating a hessian-vector product. Because we use the squared loss, the hessian
vector product, ∇2f(s)s, can be calculated as

vec(SUTU+ λ1S+ λ2LGS)

where vec(S) = s is the vectoral representation for the matrix S obtained by con-
catenating its columns.

Implementation details. We using an alternating least squares (ALS) optimiza-
tion procedure to train this model. We repeat the ALS procedure for a total of 25
iterations and perform 10 CG iterations at each step. Both, λ1 and λG are found via
grid search and are set to 0.1 and 10.0 respectively. Finally, the vector dimensionality
k is set to 300.

1https://goo.gl/6Cs43b, https://goo.gl/sUUTTE

76

www.manaraa.com

Abbreviations

ACNN Attention Convolutional Neural Network. 57

ALS Alternating Least Squares. 76

AUCOC Area Under the Receiver Operating Characteristic Curve. 12, 52

AUPRC Area Under the Precision Recall Curve. 12, 52–54

CAC Computer Aided Coding system. 1

CF Convolutional Filter. 25

CG Conjugate Gradient. 76

CMC Computational Medicine Challenge. 9, 14

CNN Convolutional Neural Network. 5, 9, 44, 61

CONSE Convex Combination of Semantic Embeddings. 58

CUIs Concept Unique Identifiers. 23

CV Convolutional Layer. 35

DAG Directed Acyclic Graph. 59

EM Embedding Layer. 35

EMR Electronic Medical Record. 1

ESZSL Embarrassingly Simple Zero-shot Learning. 58, 66

GCNN Graph Convolutional Neural Network. 57

GRALS Graph Regularized Alternating Least Squares. 66, 74

HBR Hierarchical binary relevance. 59

HIPPA Health Insurance Portability and Accountability Act. 1

ICD International Classification of Diseases. 1

77

www.manaraa.com

ICD-10-CM The International Classification of Diseases, Tenth Revision, Clinical
Modification. 1

ICD-9-CM The International Classification of Diseases, Ninth Revision, Clinical
Modification. 3, 22, 74

ICU Intensive Care Unit. 51

kNN k Nearest Neighbors. 44

L2R Learning to Rank. 39

LEML Low rank Empirical risk minimization for Multi-Label Learning. 8

MeSH Medical Subject Headings. 31

MIMIC Medical Information Mart for Intensive Care. 1, 50, 63

MNB Multinomial Naive Bayes. 17

nDCG Normalized Discounted Cumulative Gain. 8

NERC Named Entity Recognition. 39

NLM National Library of Medicine. 17

NLP Natural Language Processing. 9

NN Neural Network. 13

P@k Precision at k. 12, 52, 65

R@k Recall at k. 13, 52, 65

RNN Recurrent Neural Network. 10

RTF Rich Text Format. 15

SKR Semantic Knowledge Representation. 16

SVM Support Vector Machine. 10

UKY University of Kentucky. 2

78

www.manaraa.com

UMLS Unified Medical Language System. 17, 22

W2V Word to Vector (Word2Vec). 66

WHO World Health Organization. 55

XML eXtensible Markup Language. 14

ZACNN Zero-shot Attention Convolutional Neural Network. 66

ZAGCNN Zero-shot Attention Graph Convolutional Neural Network. 66

79

www.manaraa.com

Bibliography

[1] Z. Akata, F. Perronnin, Z. Harchaoui, and C. Schmid. “Label-embedding for
image classification”. In: IEEE transactions on pattern analysis and machine
intelligence 38.7 (2016), pp. 1425–1438.

[2] H. Altae-Tran, B. Ramsundar, A. S. Pappu, and V. Pande. “Low Data Drug
Discovery with One-Shot Learning”. In: ACS central science 3.4 (2017), pp. 283–
293.

[3] A. R. Aronson. “Effective mapping of biomedical text to the UMLS Metathe-
saurus: the MetaMap program.” In: Proceedings of the AMIA Symposium.
American Medical Informatics Association. 2001, p. 17.

[4] J. Bastings, I. Titov, W. Aziz, D. Marcheggiani, and K. Simaan. “Graph
Convolutional Encoders for Syntax-aware Neural Machine Translation”. In:
Conference on Empirical Methods in Natural Language Processing (EMNLP).
2017, pp. 1957–1967.

[5] T. Baumel, J. Nassour-Kassis, M. Elhadad, and N. Elhadad. “Multi-Label
Classification of Patient Notes a Case Study on ICD Code Assignment”. In:
arXiv preprint arXiv:1709.09587 (2017).

[6] M. Belkin and P. Niyogi. “Laplacian eigenmaps for dimensionality reduction
and data representation”. In: Neural computation 15.6 (2003), pp. 1373–1396.

[7] Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin. “A neural probabilistic
language model”. In: The Journal of Machine Learning Research 3 (2003),
pp. 1137–1155.

[8] K. Bhatia, H. Jain, P. Kar, M. Varma, and P. Jain. “Sparse local embeddings
for extreme multi-label classification”. In: Advances in neural information pro-
cessing systems (NIPS). 2015, pp. 730–738.

[9] W. Bi and J. T. Kwok. “Multi-label classification on tree-and DAG-structured
hierarchies”. In: International Conference on Machine Learning (ICML). 2011,
pp. 17–24.

[10] O. Bodenreider, S. Nelson, W. Hole, and H. Chang. “Beyond synonymy: ex-
ploiting the UMLS semantics in mapping vocabularies”. In: Proceedings of
AMIA Symposium. American Medical Informatics Association, 1998, pp. 815–
819.

80

www.manaraa.com

[11] O. Bodenreider. “The unified medical language system (UMLS): integrat-
ing biomedical terminology”. In: Nucleic acids research 32.suppl_1 (2004),
pp. D267–D270.

[12] A. Bordes, N. Usunier, S. Chopra, and J. Weston. “Large-scale simple ques-
tion answering with memory networks”. In: arXiv preprint arXiv:1506.02075
(2015).

[13] A. C. P. L. F. de Carvalho and A. A. Freitas. “A Tutorial on Multi-label
Classification Techniques”. In: Foundations of Computational Intelligence (5).
Vol. 205. 2009, pp. 177–195.

[14] C.-C. Chang and C.-J. Lin. “LIBSVM: A library for support vector machines”.
In: ACM Transactions on Intelligent Systems and Technology 2 (3 2011). Soft-
ware available at http://www.csie.ntu.edu.tw/~cjlin/libsvm (Accessed:
April 8, 2015), 27:1–27:27.

[15] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. “SMOTE:
Synthetic Minority Over-sampling Technique”. In: Journal of Artificial Intel-
ligence Research 16 (2002), pp. 321–357.

[16] M. Chen, Z. Lin, and K. Cho. “Graph Convolutional Networks for Classifi-
cation with a Structured Label Space”. In: arXiv preprint arXiv:1710.04908
(2017).

[17] E. Choi, M. T. Bahadori, A. Schuetz, W. F. Stewart, and J. Sun. “Doctor ai:
Predicting clinical events via recurrent neural networks”. In: Machine Learning
for Healthcare Conference. 2016, pp. 301–318.

[18] R. Collobert and J. Weston. “A unified architecture for natural language pro-
cessing: Deep neural networks with multitask learning”. In: International Con-
ference on Machine learning (ICML). ACM. 2008, pp. 160–167.

[19] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa.
“Natural Language Processing (Almost) from Scratch”. In: Journal of Machine
Learning Research 12 (2011), pp. 2493–2537.

[20] M. Defferrard, X. Bresson, and P. Vandergheynst. “Convolutional neural net-
works on graphs with fast localized spectral filtering”. In: Advances in Neural
Information Processing Systems (NIPS). 2016, pp. 3844–3852.

[21] M. Dougherty, S. Seabold, and S. E. White. “Study reveals hard facts on CAC”.
In: Journal of the American Health Information Management Association 84.7
(2013), pp. 54–56.

81

http://www.csie.ntu.edu.tw/~cjlin/libsvm

www.manaraa.com

[22] F. Duarte, B. Martins, C. S. Pinto, and M. J. Silva. “A Deep Learning Method
for ICD-10 Coding of Free-Text Death Certificates”. In: Portuguese Conference
on Artificial Intelligence. Springer. 2017, pp. 137–149.

[23] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. “LIBLIN-
EAR: A Library for Large Linear Classification”. In: Journal of Machine Learn-
ing Research 9 (2008), pp. 1871–1874. issn: 1532-4435.

[24] J. Y. Foo, G. K. Davis, and M. A. Brown. “Frontal lobe meningioma mimicking
preeclampsia: A case study”. In: Obstetric medicine 10.4 (2017), pp. 192–194.

[25] G. Forman. “An extensive empirical study of feature selection metrics for
text classification”. In: Journal of Machine Learning Research 3 (Mar. 2003),
pp. 1289–1305. issn: 1532-4435.

[26] J. Fürnkranz, E. Hüllermeier, E. Loza Menca, and K. Brinker. “Multilabel
classification via calibrated label ranking”. In: Machine Learning 73.2 (Nov.
2008), pp. 133–153. issn: 0885-6125.

[27] D. Gentile. “Pathological video-game use among youth ages 8 to 18: a national
study”. In: Psychological science 20.5 (2009), pp. 594–602.

[28] X. Glorot, A. Bordes, and Y. Bengio. “Deep sparse rectifier networks”. In: In-
ternational Conference on Artificial Intelligence and Statistics. JMLR W&CP
Volume. Vol. 15. 2011, pp. 315–323.

[29] M. L. Gundersen, P. J. Haug, T. A. Pryor, R. van Bree, S. Koehler, K. Bauer,
and B. Clemons. “Development and evaluation of a computerized admission
diagnosis encoding system”. In: Computers and Biomedical Research 29.5 (Oct.
1996), pp. 351–372. issn: 0010-4809.

[30] H. He and E. A. Garcia. “Learning from Imbalanced Data”. In: IEEE Transac-
tions on Knowledge and Data Engineering 21.9 (Sept. 2009), pp. 1263–1284.
issn: 1041-4347.

[31] J. Howard and S. Ruder. “Fine-tuned Language Models for Text Classifica-
tion”. In: arXiv preprint arXiv:1801.06146 (2018).

[32] D. J. Hsu, S. M. Kakade, J. Langford, and T. Zhang. “Multi-label prediction
via compressed sensing”. In: Advances in neural information processing systems
(NIPS). 2009, pp. 772–780.

[33] G. Huang, Y. Li, G. Pleiss, Z. Liu, J. E. Hopcroft, and K. Q. Weinberger.
“Snapshot ensembles: Train 1, get m for free”. In: International Conference on
Learning Representations (ICLR). 2017.

82

www.manaraa.com

[34] M. Iyyer, V. Manjunatha, J. Boyd-Graber, and H. Daumé III. “Deep unordered
composition rivals syntactic methods for text classification”. In: Annual Meet-
ing of the Association for Computational Linguistics (ACL). 2015, pp. 1681–
1691.

[35] H. Jain, Y. Prabhu, and M. Varma. “Extreme multi-label loss functions for
recommendation, tagging, ranking & other missing label applications”. In: In-
ternational Conference on Knowledge Discovery and Data Mining (SIGKDD).
ACM. 2016, pp. 935–944.

[36] A. Johnson, T. Pollard, L. Shen, L. Lehman, M. Feng, M. Ghassemi, B. Moody,
P. Szolovits, L. Celi, and R. Mark. “MIMIC-III, a freely accessible critical care
database”. In: Scientific data 3 (2016).

[37] R. Johnson and T. Zhang. “Deep pyramid convolutional neural networks for
text categorization”. In: Annual Meeting of the Association for Computational
Linguistics (ACL). Vol. 1. 2017, pp. 562–570.

[38] V. Jouhet, G. Defossez, A. Burgun, P. le Beux, P. Levillain, P. Ingrand, and
V. Claveau. “Automated classification of free-text pathology reports for reg-
istration of incident cases of cancer”. In: Methods of Information in Medicine
51.3 (2012), pp. 242–251.

[39] N. Kalchbrenner, E. Grefenstette, and P. Blunsom. “A Convolutional Neural
Network for Modeling Sentences”. In: Annual Meeting of the Association for
Computational Linguistics (ACL). 2014, pp. 655–665.

[40] N. Kamra, U. Gupta, and Y. Liu. “Deep Generative Dual Memory Network
for Continual Learning”. In: arXiv preprint arXiv:1710.10368 (2017).

[41] R. Kavuluru and A. Rios. “Automatic Assignment of Non-Leaf MeSH Terms
to Biomedical Articles”. In: AMIA 2015, American Medical Informatics Asso-
ciation Annual Symposium. 2015.

[42] R. Kavuluru, A. Rios, and Y. Lu. “An empirical evaluation of supervised learn-
ing approaches in assigning diagnosis codes to electronic medical records”. In:
Artificial intelligence in medicine 65.2 (2015), pp. 155–166.

[43] Y. Kim. “Convolutional Neural Networks for Sentence Classification”. In: Em-
pirical Methods in Natural Language Processing (EMNLP). 2014, pp. 1746–
1751.

[44] D. P. Kingma and J. Ba. “Adam: A Method for Stochastic Optimization”. In:
International Conference on Learning Representations (ICLR). 2014.

83

www.manaraa.com

[45] T. N. Kipf and M. Welling. “Semi-Supervised Classification with Graph Convo-
lutional Networks”. In: International Conference on Learning Representations
(ICLR). 2017.

[46] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A.
Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska, et al. “Over-
coming catastrophic forgetting in neural networks”. In: Proceedings of the Na-
tional Academy of Sciences 114.13 (2017), pp. 3521–3526.

[47] G. Koch, R. Zemel, and R. Salakhutdinov. “Siamese neural networks for one-
shot image recognition”. In: ICML Deep Learning Workshop. Vol. 2. 2015.

[48] J. Lee, D. J. Scott, M. Villarroel, G. D. Clifford, M. Saeed, and R. G. Mark.
“Open-access MIMIC-II database for intensive care research”. In: IEEE An-
nual International Conference Engineering in Medicine and Biology Society
(EMBC). 2011, pp. 8315–8318.

[49] Z. Li and D. Hoiem. “Learning without forgetting”. In: IEEE Transactions on
Pattern Analysis and Machine Intelligence (2017).

[50] L. R. S. de Lima, A. H. F. Laender, and B. A. Ribeiro-Neto. “A hierarchical
approach to the automatic categorization of medical documents”. In: Interna-
tional Conference on Information Management (CIKM). 1998, pp. 132–139.

[51] Z. Lin, M. Feng, C. N. d. Santos, M. Yu, B. Xiang, B. Zhou, and Y. Bengio.
“Automatic discovery and optimization of parts for image classification”. In:
International Conference on Learning Representations (ICLR). 2017.

[52] J. Liu, W.-C. Chang, Y. Wu, and Y. Yang. “Deep Learning for Extreme Multi-
label Text Classification”. In: International Conference on Research and De-
velopment in Information Retrieval (SIGIR). 2017, pp. 115–124.

[53] D. Marcheggiani and I. Titov. “Encoding Sentences with Graph Convolutional
Networks for Semantic Role Labeling”. In: Conference on Empirical Methods
in Natural Language Processing (EMNLP). 2017, pp. 1506–1515.

[54] T. Mensink, E. Gavves, and C. G. Snoek. “Costa: Co-occurrence statistics
for zero-shot classification”. In: IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). 2014, pp. 2441–2448.

[55] G. Meyer, C. Denham, J. Battles, et al. “Safe practices for better healthcare–
2010 update: a consensus report”. In: Washington, DC, National Quality Fo-
rum. 2010, p. 58.

84

www.manaraa.com

[56] T. Mikolov, A. Frome, S. Bengio, J. Shlens, Y. Singer, G. S. Corrado, J. Dean,
and M. Norouzi. “Zero-shot learning by convex combination of semantic em-
beddings”. In: International Conference on Learning Representations (ICLR).
2013.

[57] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. “Distributed
representations of words and phrases and their compositionality”. In: Advances
in Neural Information Processing Systems (NIPS). 2013, pp. 3111–3119.

[58] A. H. Miller, A. Fisch, J. Dodge, A. Karimi, A. Bordes, and J. Weston.
“Key-Value Memory Networks for Directly Reading Documents”. In: Empirical
Methods in Natural Language Processing (EMNLP). 2016, pp. 1400–1409.

[59] L. Mou, Z. Meng, R. Yan, G. Li, Y. Xu, L. Zhang, and Z. Jin. “How Transfer-
able are Neural Networks in NLP Applications?” In: Conference on Empirical
Methods in Natural Language Processing (EMNLP). 2016, pp. 479–489.

[60] J. Mullenbach, S. Wiegreffe, J. Duke, J. Sun, and J. Eisenstein. “Explainable
Prediction of Medical Codes from Clinical Text”. In: North American Chapter
of the Association for Computational Linguistics (NAACL). 2018.

[61] V. Nair and G. E. Hinton. “Rectified linear units improve restricted Boltzmann
machines”. In: International Conference on Machine Learning (ICML). 2010,
pp. 807–814.

[62] J. Nam, J. Kim, E. Loza Mencía, I. Gurevych, and J. Fürnkranz. “Large-Scale
Multi-label Text Classification - Revisiting Neural Networks”. In: European
Conference on Machine Learning and Knowledge Discovery in Databases -
(ECML PKDD). 2014, pp. 437–452.

[63] J. Nam, J. Kim, E. L. Menca, I. Gurevych, and J. Fürnkranz. “Large-scale
Multi-label Text ClassificationRevisiting Neural Networks”. In: Machine Learn-
ing and Knowledge Discovery in Databases. Springer, 2014, pp. 437–452.

[64] J. Ngiam, A. Coates, A. Lahiri, B. Prochnow, Q. V. Le, and A. Y. Ng. “On
optimization methods for deep learning”. In: International Conference on Ma-
chine Learning (ICML). 2011, pp. 265–272.

[65] J. S. Olsson. “Combining feature selectors for text classification”. In: Proc. the
15th ACM international conference on Information and knowledge manage-
ment. 2006, pp. 798–799.

85

www.manaraa.com

[66] M. Oquab, L. Bottou, I. Laptev, and J. Sivic. “Learning and Transferring Mid-
level Image Representations Using Convolutional Neural Networks”. In: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). 2014, pp. 1717–
1724.

[67] I. Partalas, A. Kosmopoulos, N. Baskiotis, T. Artières, G. Paliouras, É. Gaussier,
I. Androutsopoulos, M. Amini, and P. Gallinari. “LSHTC: A Benchmark for
Large-Scale Text Classification”. In: CoRR abs/1503.08581 (2015).

[68] H. Peng, J. Li, Y. He, Y. Liu, M. Bao, L. Wang, Y. Song, and Q. Yang. “Large-
Scale Hierarchical Text Classification with Recursively Regularized Deep Graph-
CNN”. In: World Wide Web Conference on World Wide Web. 2018, pp. 1063–
1072.

[69] A. Perotte, R. Pivovarov, K. Natarajan, N. Weiskopf, F. Wood, and N. El-
hadad. “Diagnosis code assignment: models and evaluation metrics”. In: Jour-
nal of the American Medical Informatics Association 21.2 (2013), pp. 231–
237.

[70] J. P. Pestian, C. Brew, D. J. Matykiewicz Paweand Hovermale, N. Johnson,
K. B. Cohen, and W. Duch. “A shared task involving multi-label classification
of clinical free text”. In: Proceedings of the Workshop on BioNLP: Biological,
Translational, and Clinical Language Processing. 2007, pp. 97–104.

[71] Y. Prabhu and M. Varma. “Fastxml: A fast, accurate and stable tree-classifier
for extreme multi-label learning”. In: International Conference on Knowledge
Discovery and Data Mining (SIGKDD). ACM. 2014, pp. 263–272.

[72] A. Prakash, S. Zhao, S. A. Hasan, V. V. Datla, K. Lee, A. Qadir, J. Liu, and
O. Farri. “Condensed Memory Networks for Clinical Diagnostic Inferencing.”
In: AAAI. 2017, pp. 3274–3280.

[73] S. Pyysalo, F. Ginter, H. Moen, T. Salakoski, and S. Ananiadou. “Distribu-
tional Semantics Resources for Biomedical Text Processing”. In: LBM. 2013,
pp. 39–44.

[74] J. Quevedo, O. Luaces, and A. Bahamonde. “Multilabel classifiers with a prob-
abilistic thresholding strategy”. In: Pattern Recognition 45.2 (2012), pp. 876–
883. issn: 0031-3203.

[75] N. Rao, H.-F. Yu, P. K. Ravikumar, and I. S. Dhillon. “Collaborative filtering
with graph information: Consistency and scalable methods”. In: Advances in
Neural Information Processing Systems. 2015, pp. 2107–2115.

86

www.manaraa.com

[76] J. Read, B. Pfahringer, and G. Holmes. “Multi-label Classification Using En-
sembles of Pruned Sets”. In: IEEE International Conference on Data Mining
(ICDM). 2008, pp. 995–1000.

[77] J. Read, B. Pfahringer, G. Holmes, and E. Frank. “Classifier Chains for Multi-
label Classification”. In: Machine Learning 85.3 (2011), pp. 335–359.

[78] T. C. Rindflesch, B. Libbus, D. Hristovski, A. R. Aronson, and H. Kilicoglu.
“Semantic relations asserting the etiology of genetic diseases”. In: AMIA An-
nual Symposium Proceedings. Vol. 2003. American Medical Informatics Asso-
ciation. 2003, p. 554.

[79] A. Rios and R. Kavuluru. “Analyzing the Moving Parts of a Large-Scale Multi-
Label Text Classification Pipeline: Experiences in Indexing Biomedical Ar-
ticles.” In: IEEE International Conference on Healthcare Informatics. IEEE
International Conference on Healthcare Informatics. Vol. 2015. 2015, pp. 1–7.

[80] A. Rios and R. Kavuluru. “Convolutional neural networks for biomedical text
classification: application in indexing biomedical articles”. In: Conference on
Bioinformatics, Computational Biology and Health Informatics, (BCB). 2015,
pp. 258–267.

[81] A. Rios and R. Kavuluru. “EMR Coding with Semi-Parametric Multi-Head
Matching Networks”. In: Proceedings of the North American Chapter of the
Association for Computational Linguistics (NAACL). 2018.

[82] A. Rios and R. Kavuluru. “Ordinal convolutional neural networks for predict-
ing RDoC positive valence psychiatric symptom severity scores”. In: Journal
of biomedical informatics 75 (2017), S85–S93.

[83] A. Rios and R. Kavuluru. “Supervised extraction of diagnosis codes from
EMRs: role of feature selection, data selection, and probabilistic threshold-
ing”. In: IEEE International Conference on Healthcare Informatics (ICHI).
2013, pp. 66–73.

[84] A. Rios, R. Kavuluru, and Z. Lu. “Generalizing Biomedical Relation Classi-
fication with Neural Adversarial Domain Adaptation”. In: Bioinformatics 1
(2018), p. 9.

[85] A. Rios, R. Vanderpool, P. Shaw, and R. Kavuluru. “A Multi-Label Classifica-
tion Approach for Coding Cancer Information Service Chat Transcripts”. In:
The Twenty-Sixth International FLAIRS Conference. 2013.

87

www.manaraa.com

[86] B. Romera-Paredes and P. Torr. “An embarrassingly simple approach to zero-
shot learning”. In: International Conference on Machine Learning. 2015, pp. 2152–
2161.

[87] T. N. Rubin, A. Chambers, P. Smyth, and M. Steyvers. “Statistical topic
models for multi-label document classification”. In: Machine Learning 88.1-2
(2012), pp. 157–208.

[88] S. K. Sahu and A. Anand. “What matters in a transferable neural network
model for relation classification in the biomedical domain?” In: arXiv preprint
arXiv:1708.03446 (2017).

[89] U. Sandouk and K. Chen. “Multi-label zero-shot learning via concept embed-
ding”. In: arXiv preprint arXiv:1606.00282 (2016).

[90] C. dos Santos, B. Xiang, and B. Zhou. “Classifying Relations by Ranking with
Convolutional Neural Networks”. In: Annual Meeting of the Association for
Computational Linguistics (ACL). 2015, pp. 626–634.

[91] M. Schlichtkrull, T. N. Kipf, P. Bloem, R. v. d. Berg, I. Titov, and M. Welling.
“Modeling Relational Data with Graph Convolutional Networks”. In: Proceed-
ings of 15th European Semantic Web Conference (ESWC 2018). 2018.

[92] J. Shreve, J. Van, D. Bos, T. Gray, M. Halford, K. Restagi, and E. Ziemki-
wicz. “The Economic Measurement of Medical Errors”. In: Society of Actuaries
(2010).

[93] L. Shu, H. Xu, and B. Liu. “DOC: Deep Open Classification of Text Doc-
uments”. In: Empirical Methods in Natural Language Processing (EMNLP).
2017, pp. 2911–2916.

[94] J. Snell, K. Swersky, and R. Zemel. “Prototypical Networks for Few-shot Learn-
ing”. In: Advances in Neural Information Processing Systems 30. Ed. by I.
Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett. Curran Associates, Inc., 2017, pp. 4078–4088.

[95] J. Snell, K. Swersky, and R. Zemel. “Prototypical networks for few-shot learn-
ing”. In: Advances in Neural Information Processing Systems. 2017, pp. 4080–
4090.

[96] R. Socher. “Recursive deep learning for natural language processing and com-
puter vision”. PhD thesis. Citeseer, 2014.

88

www.manaraa.com

[97] S. Sohn, W. Kim, D. C. Comeau, and W. J. Wilbur. “Optimal Training Sets for
Bayesian Prediction of MeSH Term Assignment.” In: Journal of the American
Medical Informatics Association 15.4 (2008), pp. 546–553.

[98] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov.
“Dropout: A simple way to prevent neural networks from overfitting”. In: The
Journal of Machine Learning Research 15.1 (2014), pp. 1929–1958.

[99] S. Al-Stouhi and C. K. Reddy. “Transfer learning for class imbalance problems
with inadequate data”. In: Knowledge and information systems 48.1 (2016),
pp. 201–228.

[100] E. Strubell and A. McCallum. “Dependency Parsing with Dilated Iterated
Graph CNNs”. In: Workshop on Structured Prediction for Natural Language
Processing, SPNLP@EMNLP. 2017, pp. 1–6.

[101] S. Sukhbaatar, J. Weston, R. Fergus, et al. “End-to-end memory networks”.
In: Advances in neural information processing systems. 2015, pp. 2440–2448.

[102] F. Tai and H.-T. Lin. “Multilabel classification with principal label space trans-
formation”. In: Neural Computation 24.9 (2012), pp. 2508–2542.

[103] L. Tang, S. Rajan, and V. K. Narayanan. “Large scale multi-label classification
via metalabeler”. In: Proceedings of the 18th international conference on World
wide web. ACM. 2009, pp. 211–220.

[104] T. Tran and R. Kavuluru. “Supervised Approaches to Assign Cooperative
Patent Classification (CPC) Codes to Patents”. In: International Conference
on Mining Intelligence and Knowledge Exploration. Springer. 2017, pp. 22–34.

[105] G. Tsoumakas, I. Katakis, and I. P. Vlahavas. “Mining Multi-label Data”. In:
Data Mining and Knowledge Discovery Handbook. 2010, pp. 667–685.

[106] A. Vani, Y. Jernite, and D. Sontag. “Grounded Recurrent Neural Networks”.
In: arXiv preprint arXiv:1705.08557 (2017).

[107] O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra, et al. “Matching networks
for one shot learning”. In: Advances in Neural Information Processing Systems.
2016, pp. 3630–3638.

[108] B. C. Wallace, K. Small, C. E. Brodley, and T. A. Trikalinos. “Class imbalance,
redux”. In: IEEE International Conference on Data Mining (ICDM). 2011,
pp. 754–763.

89

www.manaraa.com

[109] X. Wang, Y. Ye, and A. Gupta. “Zero-shot Recognition via Semantic Embed-
dings and Knowledge Graphs”. In: arXiv preprint arXiv:1803.08035 (2018).

[110] J. Weston, S. Chopra, and A. Bordes. “Memory networks”. In: arXiv preprint
arXiv:1410.3916 (2014).

[111] J. Wiens, J. Guttag, and E. Horvitz. “A study in transfer learning: leverag-
ing data from multiple hospitals to enhance hospital-specific predictions”. In:
Journal of the American Medical Informatics Association 21.4 (2014), pp. 699–
706.

[112] R. T. Wood. “Problems with the concept of video game addiction: Some case
study examples”. In: International Journal of Mental Health and Addiction 6.2
(2008), pp. 169–178.

[113] B. Wu, S. Lyu, and B. Ghanem. “Ml-mg: Multi-label learning with missing
labels using a mixed graph”. In: IEEE International Conference on Computer
Vision (ICCV). 2015, pp. 4157–4165.

[114] Y. Xian, B. Schiele, and Z. Akata. “Zero-shot learning-The Good, the Bad and
the Ugly”. In: IEEE Conference on Computer Vision and Pattern Recognition.
IEEE Computer Society. 2017, pp. 3077–3086.

[115] C. Xu, D. Tao, and C. Xu. “Robust Extreme Multi-label Learning.” In: KDD.
2016, pp. 1275–1284.

[116] Z. Yang, D. Yang, C. Dyer, X. He, A. Smola, and E. Hovy. “Hierarchical
attention networks for document classification”. In: Conference of the North
American Chapter of the Association for Computational Linguistics: Human
Language Technologies. 2016, pp. 1480–1489.

[117] H. Yu, P. Jain, P. Kar, and I. S. Dhillon. “Large-scale Multi-label Learning with
Missing Labels”. In: International Conference on Machine Learning (ICML).
2014, pp. 593–601.

[118] M. D. Zeiler. “ADADELTA: an adaptive learning rate method”. In: arXiv
preprint arXiv:1212.5701 (2012).

[119] M. D. Zeiler, D. Krishnan, G. W. Taylor, and R. Fergus. “Deconvolutional
networks”. In: Computer Vision and Pattern Recognition (CVPR), 2010 IEEE
Conference on. IEEE. 2010, pp. 2528–2535.

[120] D. Zeng, K. Liu, S. Lai, G. Zhou, J. Zhao, et al. “Relation Classification via
Convolutional Deep Neural Network.” In: COLING. 2014, pp. 2335–2344.

90

www.manaraa.com

[121] D. Zhang, D. He, S. Zhao, and L. Li. “Enhancing Automatic ICD-9-CM
Code Assignment for Medical Texts with PubMed”. In: BioNLP 2017 (2017),
pp. 263–271.

[122] M.-L. Zhang and K. Zhang. “Multi-label learning by exploiting label depen-
dency”. In: Proceedings of the 16th ACM SIGKDD. KDD ’10. 2010, pp. 999–
1008. isbn: 978-1-4503-0055-1.

91

www.manaraa.com

Vita

Name

Anthony Rios

Education

• 2007–2011 B.S. in Computer Science Georgetown College Georgetown,
Kentucky

Experience

• 2017, Summer Research Fellow, National Institute of Health (NCBI/NLM/NIH),
Bethesda, Maryland

• 2013–present, Graduate Research Assistant, University of Kentucky, Lexington,
Kentucky

• 2010–2013, Software Engineer Intern/Co-op, Lexmark International, Lexington,
Kentucky

• Spring 2010, Software Engineer Intern, Corevalus Systems LLC., Georgetown,
Kentucky

Awards

• 2017 – Best poster, Annual Commonwealth Computational Summit

• 2017 – Ranked 1st (among 13 teams; 500 Euro prize) in the BioCreative CHEMPROT
text mining shared task

• 2017 – Ranked 2nd (among 11 teams) in the shared task on classification of
medication intake messages on Twitter for online pharmacovigilance (at Social
media mining for health workshop at AMIA)

• 2017 – NIH Intramural Research Training Award (IRTA)

• 2016 – Ranked 3rd (among 24 teams) in the CEGS NGRID shared task on
predicting psychiatric symptom severity scores based on clinical notes (RDoC
for Psychiatry workshop at AMIA)

92

www.manaraa.com

• 2015 – Thaddeus B. Curtz Memorial Scholarship, University of Kentucky

• 2015 – Best paper finalist, IEEE ICHI 2015.

• 2015 – Ranked 2nd (among 18 teams), Annual BioASQ Semantic Indexing
Challenge, Task A (Batch 2)

• 2014 – Distinguished poster finalist, AMIA

• 2011 – Outstanding Senior in Computer Science, Georgetown College

Publications

1. Y. Peng, A. Rios, R. Kavuluru, and Z. Lu. Extracting chemical-protein rela-
tions with ensembles of SVM and deep learning models. Database. 2018.

2. A. Rios, T. Tran, and R. Kavuluru. Predicting Psychological Health from
Childhood Essays with Convolutional Neural Networks for the CLPsych 2018
Shared Task (Team UKNLP). In Fifth Annual Computational Linguistics and
Clinical Psychology Workshop (CLPsych). 2018

3. A. Rios, R. Kavuluru, and Z. Lu. Generalizing Biomedical Relation Classifi-
cation with Neural Adversarial Domain Adaptation. Bioinformatics. 2018.

4. A. Rios and R. Kavuluru. EMR Coding with Semi-Parametric Multi-Head
Matching Networks. In Conference of the North American Chapter of the As-
sociation for Computational Linguistics (NAACL); 2018.

5. A. Rios and R. Kavuluru, Ordinal Convolutional Neural Networks for Predict-
ing RDoC Positive Valence Psychiatric Symptom Severity Scores. Journal of
Biomedical Informatics, Volume 75, Pages S85-S93, 2017.

6. Y. Peng, A. Rios, R. Kavuluru, and Z. Lu. Chemical-protein relation ex-
traction with SVM, CNN, RNN and ensemble systems. In 6th BioCreative
Challenge Evaluation Workshop. 2017

7. S. Han, T. Tran, A. Rios, and R. Kavuluru. Team UKNLP: Detecting ADRs,
Classifying Medication In-take Messages, and Normalizing ADR Mentions on
Twitter. In 2nd Social Media Mining for Health Applications Workshop and
Shared Task at AMIA. 2017

8. R. Kavuluru, A. Rios, and T. Tran. Extracting Drug-Drug Interactions with
Word and Character-Level Recurrent Neural Networks. In IEEE International
Conference on Healthcare Informatics, Workshop on Healthcare Knowledge Dis-
covery and Management. 2017

93

www.manaraa.com

9. R. Kavuluru, A. Rios, and Y. Lu. An Empirical Evaluation of Supervised
Learning Approaches in Assigning Diagnosis Codes to Electronic Medical Records.
Artificial Intelligence in Medicine, Volume 65, Issue 2; 2015.

10. R. Kavuluru and A. Rios. Automatic Assignment of Non-Leaf Medical Sub-
ject Headings to Biomedical Articles. Proceedings of the American Medical
Informatics Association annual symposium; 2015

11. A. Rios and R. Kavuluru. Analyzing the Moving Parts of a Large-Scale Multi-
Label Text Classication Pipeline: Experiences in Indexing Biomedical Articles.
In IEEE International Conference on Healthcare Informatics; 2015

12. A. Rios and R. Kavuluru. Convolutional Neural Networks for Biomedical
Text Classication: Application in Indexing Biomedical Articles. In 6th ACM
Conference on Bioinformatics, Computational Biology, and Health Informatics;
2015

13. R. Kavuluru, A. Rios, Brandon Kulengowski, and Patrick McNamara. A
Knowledge-Based Collaborative Clinical Case Mining Framework. In American
Medical Informatics Association (AMIA) annual symposium; 2014

14. A. Rios and R. Kavuluru. Supervised Extraction of Diagnosis Codes from
EMRs: Role of Feature Selection, Data Selection, and Probabilistic Threshold-
ing. In IEEE International Conference on Healthcare Informatics; 2013

15. A. Rios, R. Vanderpool, P. Shaw, and R. Kavuluru. A Multi-Label Classication
Approach to Coding Cancer Information Service Chat Transcripts. In 26th
International Florida AI Research Society conference; 2013

94

	Deep Neural Networks for Multi-Label Text Classification: Application to Coding Electronic Medical Records
	Recommended Citation

	Title Page
	Abstract
	Dedication
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	1 Medical Coding
	1.1 Thesis statement
	1.2 Organization
	1.3 Related Publications

	2 Related Work and Background
	2.1 Multi-label Classification
	2.2 Extreme Multi-label Classification
	2.3 Neural Networks for Text
	2.4 Diagnosis Coding and Biomedical Text Classification
	2.5 Notation
	2.6 Evaluation Measures
	2.7 EMR coding using Linear Models
	2.7.1 Datasets
	2.7.2 Multi-Label Text Classification Approaches
	2.7.3 Results and Discussion
	2.7.4 Conclusion

	2.8 Convolutional Neural Networks for Text Classification
	2.8.1 Convolutions and CFs
	2.8.2 Model Specification
	2.8.3 Discussion

	3 Extracting Diagnosis Codes using Transfer Learning from EMRs
	3.1 Related Work: Transfer Learning
	3.2 Materials and Methods
	3.2.1 Overview
	3.2.2 Convolutional Neural Networks for Text Classification
	3.2.3 Stage 1: Training on Source
	3.2.4 Stage 2: Transfer Learning
	3.2.5 Word Dropout
	3.2.6 Ensemble

	3.3 Experiments
	3.3.1 Implementation Details
	3.3.2 Baseline Methods
	3.3.3 Layer by Layer Analysis
	3.3.4 Comparison with prior work
	3.3.5 Label Frequency Analysis

	3.4 Conclusion

	4 EMR Coding with Semi-Parametric Multi-Head Matching Networks
	4.1 Related Work: Memory Augmented Neural Networks
	4.2 Our Architecture
	4.2.1 Convolutional Neural Networks
	4.2.2 Multi-Head Matching Network
	4.2.3 MetaLabeler
	4.2.4 Training
	4.2.5 Matching Network Interpretation

	4.3 Experiments
	4.3.1 Datasets
	4.3.2 Implementation Details
	4.3.3 Baseline Methods
	4.3.4 Evaluation Metrics
	4.3.5 Results

	4.4 Conclusion

	5 Zero-shot and Few-shot Multi-label Learning
	5.1 Related Work
	5.1.1 Few-Shot and Zero-Shot Learning
	5.1.2 Structured Label Correlations for Multi-label Classification
	5.1.3 Graph Convolutional Neural Networks

	5.2 Method
	5.2.1 Convolutional Neural Network
	5.2.2 Label Vectors
	5.2.3 Label-Wise Attention
	5.2.4 GCNN Output Layer
	5.2.5 Training

	5.3 Experiments
	5.3.1 Datasets
	5.3.2 Implementation Details.
	5.3.3 Evaluation Measures
	5.3.4 Baseline Methods
	5.3.5 Results

	5.4 Conclusion

	6 Conclusion and Future Work
	6.1 Summary of Contributions
	6.2 Limitations and Directions for Future Work

	A Graph Regularized Concept Vectors
	Abbreviations
	Bibliography
	Vita

